These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 28653579)
21. An Ensemble of Fine-Tuned Convolutional Neural Networks for Medical Image Classification. Kumar A; Kim J; Lyndon D; Fulham M; Feng D IEEE J Biomed Health Inform; 2017 Jan; 21(1):31-40. PubMed ID: 28114041 [TBL] [Abstract][Full Text] [Related]
22. grasviq: an image analysis framework for automatically quantifying vein number and morphology in grass leaves. Robil JM; Gao K; Neighbors CM; Boeding M; Carland FM; Bunyak F; McSteen P Plant J; 2021 Jul; 107(2):629-648. PubMed ID: 33914380 [TBL] [Abstract][Full Text] [Related]
23. Identification of quantitative trait Loci for resistance to southern leaf blight and days to anthesis in two maize recombinant inbred line populations. Balint-Kurti PJ; Zwonitzer JC; Pè ME; Pea G; Lee M; Cardinal AJ Phytopathology; 2008 Mar; 98(3):315-20. PubMed ID: 18944082 [TBL] [Abstract][Full Text] [Related]
24. Photosynthetic Costs and Impact on Epidemiological Parameters Associated with Navarro BL; Streit S; Nogueira Júnior AF; von Tiedemann A Phytopathology; 2024 Apr; 114(4):760-769. PubMed ID: 37889164 [TBL] [Abstract][Full Text] [Related]
25. Validation of consensus quantitative trait loci associated with resistance to multiple foliar pathogens of maize. Asea G; Vivek BS; Bigirwa G; Lipps PE; Pratt RC Phytopathology; 2009 May; 99(5):540-7. PubMed ID: 19351250 [TBL] [Abstract][Full Text] [Related]
26. The quantification of southern corn leaf blight disease using deep UV fluorescence spectroscopy and autoencoder anomaly detection techniques. Banah H; Balint-Kurti PJ; Houdinet G; Hawkes CV; Kudenov M PLoS One; 2024; 19(5):e0301779. PubMed ID: 38748689 [TBL] [Abstract][Full Text] [Related]
27. Maize seedling blight induced by Fusarium verticillioides: accumulation of fumonisin B₁ in leaves without colonization of the leaves. Baldwin TT; Zitomer NC; Mitchell TR; Zimeri AM; Bacon CW; Riley RT; Glenn AE J Agric Food Chem; 2014 Mar; 62(9):2118-25. PubMed ID: 24524621 [TBL] [Abstract][Full Text] [Related]
28. Automatic detection of diseased tomato plants using thermal and stereo visible light images. Raza SE; Prince G; Clarkson JP; Rajpoot NM PLoS One; 2015; 10(4):e0123262. PubMed ID: 25861025 [TBL] [Abstract][Full Text] [Related]
29. Field pea leaf disease classification using a deep learning approach. Girmaw DW; Muluneh TW PLoS One; 2024; 19(7):e0307747. PubMed ID: 39052602 [TBL] [Abstract][Full Text] [Related]
30. Pheno-Deep Counter: a unified and versatile deep learning architecture for leaf counting. Giuffrida MV; Doerner P; Tsaftaris SA Plant J; 2018 Nov; 96(4):880-890. PubMed ID: 30101442 [TBL] [Abstract][Full Text] [Related]
31. Image Filtering to Improve Maize Tassel Detection Accuracy Using Machine Learning Algorithms. Rodene E; Fernando GD; Piyush V; Ge Y; Schnable JC; Ghosh S; Yang J Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610383 [TBL] [Abstract][Full Text] [Related]
32. Mapping resistance quantitative trait Loci for three foliar diseases in a maize recombinant inbred line population-evidence for multiple disease resistance? Zwonitzer JC; Coles ND; Krakowsky MD; Arellano C; Holland JB; McMullen MD; Pratt RC; Balint-Kurti PJ Phytopathology; 2010 Jan; 100(1):72-9. PubMed ID: 19968551 [TBL] [Abstract][Full Text] [Related]
33. Automated and accurate segmentation of leaf venation networks via deep learning. Xu H; Blonder B; Jodra M; Malhi Y; Fricker M New Phytol; 2021 Jan; 229(1):631-648. PubMed ID: 32964424 [TBL] [Abstract][Full Text] [Related]
34. Integrating Automated Labeling Framework for Enhancing Deep Learning Models to Count Corn Plants Using UAS Imagery. Katari S; Venkatesh S; Stewart C; Khanal S Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409507 [TBL] [Abstract][Full Text] [Related]
35. Identification and fine mapping of rhm1 locus for resistance to Southern corn leaf blight in maize. Zhao Y; Lu X; Liu C; Guan H; Zhang M; Li Z; Cai H; Lai J J Integr Plant Biol; 2012 May; 54(5):321-9. PubMed ID: 22348228 [TBL] [Abstract][Full Text] [Related]
36. Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? Tajbakhsh N; Shin JY; Gurudu SR; Hurst RT; Kendall CB; Gotway MB; Jianming Liang IEEE Trans Med Imaging; 2016 May; 35(5):1299-1312. PubMed ID: 26978662 [TBL] [Abstract][Full Text] [Related]
37. Automated Training of Deep Convolutional Neural Networks for Cell Segmentation. Sadanandan SK; Ranefall P; Le Guyader S; Wählby C Sci Rep; 2017 Aug; 7(1):7860. PubMed ID: 28798336 [TBL] [Abstract][Full Text] [Related]
38. A robust, high-throughput method for computing maize ear, cob, and kernel attributes automatically from images. Miller ND; Haase NJ; Lee J; Kaeppler SM; de Leon N; Spalding EP Plant J; 2017 Jan; 89(1):169-178. PubMed ID: 27585732 [TBL] [Abstract][Full Text] [Related]
39. Classification of Plant Leaf Diseases Based on Improved Convolutional Neural Network. Hang J; Zhang D; Chen P; Zhang J; Wang B Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31557958 [TBL] [Abstract][Full Text] [Related]
40. Systems genetics reveals a transcriptional network associated with susceptibility in the maize-grey leaf spot pathosystem. Christie N; Myburg AA; Joubert F; Murray SL; Carstens M; Lin YC; Meyer J; Crampton BG; Christensen SA; Ntuli JF; Wighard SS; Van de Peer Y; Berger DK Plant J; 2017 Feb; 89(4):746-763. PubMed ID: 27862526 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]