These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28653976)

  • 1. Experimental Demonstration of Long-Range Underwater Acoustic Communication Using a Vertical Sensor Array.
    Zhao A; Zeng C; Hui J; Ma L; Bi X
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28653976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Underwater Time Reversal Communication Method Using Symbol-Based Doppler Compensation with a Single Sound Pressure Sensor.
    Zhao A; Zeng C; Hui J; Ma L; Bi X
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30274286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. M-ary Cyclic Shift Keying Spread Spectrum Underwater Acoustic Communications Based on Virtual Time-Reversal Mirror.
    Zhou F; Liu B; Nie D; Yang G; Zhang W; Ma D
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filtered Multitone Modulation Underwater Acoustic Communications Using Low-Complexity Channel-Estimation-Based MMSE Turbo Equalization.
    Sun L; Wang M; Zhang G; Li H; Huang L
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31212900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint Time-Reversal Space-Time Block Coding and Adaptive Equalization for Filtered Multitone Underwater Acoustic Communications.
    Sun L; Yan M; Li H; Xu Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image Super Resolution-Based Channel Estimation for Orthogonal Chirp Division Multiplexing on Shallow Water Underwater Acoustic Communications.
    Liu H; He C; Yu Y; Bai Y; Han Y
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single Carrier with Frequency Domain Equalization for Synthetic Aperture Underwater Acoustic Communications.
    He C; Xi R; Wang H; Jing L; Shi W; Zhang Q
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28684683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time reversal multiple-input/multiple-output acoustic communication enhanced by parallel interference cancellation.
    Song A; Badiey M
    J Acoust Soc Am; 2012 Jan; 131(1):281-91. PubMed ID: 22280591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Passive Time Reversal Underwater Acoustic Communications Using Subarray Processing.
    He C; Jing L; Xi R; Li Q; Zhang Q
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28441763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimicking Covert Communication by Time-Frequency Shift Modulation for Increasing Mimicking and BER Performances.
    Ahn J; Lee H; Kim Y; Kim W; Chung J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33804747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal Deployment of Vector Sensor Nodes in Underwater Acoustic Sensor Networks.
    Kim S; Choi JW
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prefiltered Single-Carrier Frequency-Domain Equalization for Binary CPM over Shallow Water Acoustic Channel.
    Han R; Jia N; Guo Z; Huang J; Xiao D; Guo S
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remote acoustic illumination using time reversal and a surface ship.
    Song HC; Byun G; Kim JS
    J Acoust Soc Am; 2019 Mar; 145(3):1565. PubMed ID: 31067953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital Self-Interference Cancellation for Asynchronous In-Band Full-Duplex Underwater Acoustic Communication.
    Qiao G; Gan S; Liu S; Ma L; Sun Z
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29795030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vector Sensor Steering-Dependent Performance in an Underwater Acoustic Communication Field Experiment.
    Bozzi FA; Jesus SM
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An enhanced iterative receiver based on vector approximate message passing for deep-sea vertical underwater acoustic communications.
    Li D; Wu Y; Zhu M; Tao J
    J Acoust Soc Am; 2021 Mar; 149(3):1549. PubMed ID: 33765778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian Learning-Based Clustered-Sparse Channel Estimation for Time-Varying Underwater Acoustic OFDM Communication.
    Wang S; Liu M; Li D
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance analysis of direct-sequence spread-spectrum underwater acoustic communications with low signal-to-noise-ratio input signals.
    Yang TC; Yang WB
    J Acoust Soc Am; 2008 Feb; 123(2):842-55. PubMed ID: 18247889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covert underwater acoustic communications.
    Ling J; He H; Li J; Roberts W; Stoica P
    J Acoust Soc Am; 2010 Nov; 128(5):2898-909. PubMed ID: 21110585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Results of Underwater Acoustic Communication with Nonlinear Frequency Modulation Waveform.
    An J; Ra H; Youn C; Kim K
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.