These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28654043)

  • 1. Light-mediated Reversible Modulation of the Mitogen-activated Protein Kinase Pathway during Cell Differentiation and Xenopus Embryonic Development.
    Krishnamurthy VV; Turgeon AJ; Khamo JS; Mondal P; Sharum SR; Mei W; Yang J; Zhang K
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28654043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible optogenetic control of kinase activity during differentiation and embryonic development.
    Krishnamurthy VV; Khamo JS; Mei W; Turgeon AJ; Ashraf HM; Mondal P; Patel DB; Risner N; Cho EE; Yang J; Zhang K
    Development; 2016 Nov; 143(21):4085-4094. PubMed ID: 27697903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-Regulated Protein Kinases Based on the CRY2-CIB1 System.
    Mühlhäuser WW; Hörner M; Weber W; Radziwill G
    Methods Mol Biol; 2017; 1596():257-270. PubMed ID: 28293892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic inhibition of apical constriction during Drosophila embryonic development.
    Guglielmi G; De Renzis S
    Methods Cell Biol; 2017; 139():167-186. PubMed ID: 28215335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prolonged activation of the mitogen-activated protein kinase pathway is required for macrophage-like differentiation of a human myeloid leukemic cell line.
    Hu X; Moscinski LC; Valkov NI; Fisher AB; Hill BJ; Zuckerman KS
    Cell Growth Differ; 2000 Apr; 11(4):191-200. PubMed ID: 10775036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of activated MAP kinase in Xenopus laevis embryos: evaluating the roles of FGF and other signaling pathways in early induction and patterning.
    Curran KL; Grainger RM
    Dev Biol; 2000 Dec; 228(1):41-56. PubMed ID: 11087625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2.
    Pathak GP; Spiltoir JI; Höglund C; Polstein LR; Heine-Koskinen S; Gersbach CA; Rossi J; Tucker CL
    Nucleic Acids Res; 2017 Nov; 45(20):e167. PubMed ID: 28431041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light Control of the Tet Gene Expression System in Mammalian Cells.
    Yamada M; Suzuki Y; Nagasaki SC; Okuno H; Imayoshi I
    Cell Rep; 2018 Oct; 25(2):487-500.e6. PubMed ID: 30304687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual roles for c-Jun N-terminal kinase in developmental and stress responses in cerebellar granule neurons.
    Coffey ET; Hongisto V; Dickens M; Davis RJ; Courtney MJ
    J Neurosci; 2000 Oct; 20(20):7602-13. PubMed ID: 11027220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic control of protein kinase activity in mammalian cells.
    Wend S; Wagner HJ; Müller K; Zurbriggen MD; Weber W; Radziwill G
    ACS Synth Biol; 2014 May; 3(5):280-5. PubMed ID: 24090449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized second-generation CRY2-CIB dimerizers and photoactivatable Cre recombinase.
    Taslimi A; Zoltowski B; Miranda JG; Pathak GP; Hughes RM; Tucker CL
    Nat Chem Biol; 2016 Jun; 12(6):425-30. PubMed ID: 27065233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Generalizable Optogenetic Strategy to Regulate Receptor Tyrosine Kinases during Vertebrate Embryonic Development.
    Krishnamurthy VV; Fu J; Oh TJ; Khamo J; Yang J; Zhang K
    J Mol Biol; 2020 May; 432(10):3149-3158. PubMed ID: 32277988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic control of intracellular signaling pathways.
    Zhang K; Cui B
    Trends Biotechnol; 2015 Feb; 33(2):92-100. PubMed ID: 25529484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis.
    Sun Y; Liu WZ; Liu T; Feng X; Yang N; Zhou HF
    J Recept Signal Transduct Res; 2015; 35(6):600-4. PubMed ID: 26096166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terminal differentiation and mitogen-activated protein kinase signaling in human cholesteatoma epithelium.
    Huisman MA; De Heer E; Grote JJ
    Otol Neurotol; 2006 Apr; 27(3):422-6. PubMed ID: 16639284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical control of mammalian endogenous transcription and epigenetic states.
    Konermann S; Brigham MD; Trevino A; Hsu PD; Heidenreich M; Cong L; Platt RJ; Scott DA; Church GM; Zhang F
    Nature; 2013 Aug; 500(7463):472-476. PubMed ID: 23877069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nemo-like kinase-myocyte enhancer factor 2A signaling regulates anterior formation in Xenopus development.
    Satoh K; Ohnishi J; Sato A; Takeyama M; Iemura S; Natsume T; Shibuya H
    Mol Cell Biol; 2007 Nov; 27(21):7623-30. PubMed ID: 17785444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An optogenetic approach to control protein localization during embryogenesis of the sea urchin.
    Uchida A; Yajima M
    Dev Biol; 2018 Sep; 441(1):19-30. PubMed ID: 29958898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic perturbation of the biochemical pathways that control cell behavior.
    Haar LL; Lawrence DS; Hughes RM
    Methods Enzymol; 2019; 622():309-328. PubMed ID: 31155059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mos and the mitogen-activated protein kinase do not show cytostatic factor activity in early mouse embryos.
    Kashima K; Kano K; Naito K
    J Reprod Dev; 2007 Dec; 53(6):1175-82. PubMed ID: 17827876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.