BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 28654068)

  • 1. Fabrication of 3D Carbon Microelectromechanical Systems (C-MEMS).
    Pramanick B; Martinez-Chapa SO; Madou M; Hwang H
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28654068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From MEMS to NEMS with carbon.
    Wang C; Madou M
    Biosens Bioelectron; 2005 Apr; 20(10):2181-7. PubMed ID: 15741096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Custom-Designed Glassy Carbon Tips for Atomic Force Microscopy.
    Zakhurdaeva A; Dietrich PI; Hölscher H; Koos C; Korvink JG; Sharma S
    Micromachines (Basel); 2017 Sep; 8(9):. PubMed ID: 30400475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perspectives on C-MEMS and C-NEMS biotech applications.
    Forouzanfar S; Pala N; Madou M; Wang C
    Biosens Bioelectron; 2021 May; 180():113119. PubMed ID: 33711652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glassy carbon microneedles-new transdermal drug delivery device derived from a scalable C-MEMS process.
    Mishra R; Pramanick B; Maiti TK; Bhattacharyya TK
    Microsyst Nanoeng; 2018; 4():38. PubMed ID: 31057926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased graphitization in electrospun single suspended carbon nanowires integrated with carbon-MEMS and carbon-NEMS platforms.
    Sharma S; Sharma A; Cho YK; Madou M
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):34-9. PubMed ID: 22214509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Printed Carbon Electrodes for Neurotransmitter Detection.
    Yang C; Cao Q; Puthongkham P; Lee ST; Ganesana M; Lavrik NV; Venton BJ
    Angew Chem Int Ed Engl; 2018 Oct; 57(43):14255-14259. PubMed ID: 30207021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printing for electroanalysis: From multiuse electrochemical cells to sensors.
    Cardoso RM; Mendonça DMH; Silva WP; Silva MNT; Nossol E; da Silva RAB; Richter EM; Muñoz RAA
    Anal Chim Acta; 2018 Nov; 1033():49-57. PubMed ID: 30172331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.
    Tian P; Chen C; Hu J; Qi J; Wang Q; Chen JC; Cavanaugh J; Peng Y; Cheng MM
    Biomed Microdevices; 2017 Nov; 20(1):4. PubMed ID: 29170867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Penetrating glassy carbon neural electrode arrays for brain-machine interfaces.
    Chen B; Zhang B; Chen C; Hu J; Qi J; He T; Tian P; Zhang X; Ni G; Cheng MM
    Biomed Microdevices; 2020 Jun; 22(3):43. PubMed ID: 32504225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomaterials Based Micro/Nanoelectromechanical System (MEMS and NEMS) Devices.
    Torkashvand Z; Shayeganfar F; Ramazani A
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-carbon suspended nanowire sensors as a rapid highly-sensitive label-free chemiresistive biosensing platform.
    Thiha A; Ibrahim F; Muniandy S; Dinshaw IJ; Teh SJ; Thong KL; Leo BF; Madou M
    Biosens Bioelectron; 2018 Jun; 107():145-152. PubMed ID: 29455024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Allergens to Battery Anodes: Nature-Inspired, Pollen Derived Carbon Architectures for Room- and Elevated-Temperature Li-ion Storage.
    Tang J; Etacheri V; Pol VG
    Sci Rep; 2016 Feb; 6():20290. PubMed ID: 26846311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges.
    Herrera-May AL; Soler-Balcazar JC; Vázquez-Leal H; Martínez-Castillo J; Vigueras-Zuñiga MO; Aguilera-Cortés LA
    Sensors (Basel); 2016 Aug; 16(9):. PubMed ID: 27563912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal Organic Frameworks Derived Fe-N-C Nanostructures as High-Performance Electrodes for Sodium Ion Batteries and Electromagnetic Interference (EMI) Shielding.
    Sridhar V; Lee I; Park H
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33671928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant-free synthesis of three-dimensional nitrogen-doped hierarchically porous carbon and its application as an electrode modification material for simultaneous sensing of ascorbic acid, dopamine and uric acid.
    Nsabimana A; Lai J; Li S; Hui P; Liu Z; Xu G
    Analyst; 2017 Jan; 142(3):478-484. PubMed ID: 28094353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable Nanostructured Carbon Electrode Arrays for Enhanced Dopamine Detection.
    Demuru S; Nela L; Marchack N; Holmes SJ; Farmer DB; Tulevski GS; Lin Q; Deligianni H
    ACS Sens; 2018 Apr; 3(4):799-805. PubMed ID: 29480715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printing Carbonaceous Objects from Polyimide Pyrolysis.
    Arrington CB; Rau DA; Vandenbrande JA; Hegde M; Williams CB; Long TE
    ACS Macro Lett; 2021 Apr; 10(4):412-418. PubMed ID: 35549232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freestanding 3D mesoporous Co₃O₄@carbon foam nanostructures for ethanol gas sensing.
    Li L; Liu M; He S; Chen W
    Anal Chem; 2014 Aug; 86(15):7996-8002. PubMed ID: 25011608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitive and selective non-enzymatic detection of glucose by monodispersed NiO @ S-doped hollow carbon sphere hybrid nanostructures.
    Madhuvilakku R; Mariappan R; Alagar S; Piraman S
    Anal Chim Acta; 2018 Dec; 1042():93-108. PubMed ID: 30428993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.