These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 28654236)
1. Closed Bipolar Electrodes for Spatial Separation of H Goodwin S; Walsh DA ACS Appl Mater Interfaces; 2017 Jul; 9(28):23654-23661. PubMed ID: 28654236 [TBL] [Abstract][Full Text] [Related]
2. Innovative Strategies for Electrocatalytic Water Splitting. You B; Sun Y Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825 [TBL] [Abstract][Full Text] [Related]
3. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell. Li W; Bonakdarpour A; Gyenge E; Wilkinson DP ChemSusChem; 2013 Nov; 6(11):2137-43. PubMed ID: 24039111 [TBL] [Abstract][Full Text] [Related]
4. Green Hydrogen Production by Low-Temperature Membrane-Engineered Water Electrolyzers, and Regenerative Fuel Cells. Bodard A; Chen Z; ELJarray O; Zhang G Small Methods; 2024 Sep; ():e2400574. PubMed ID: 39285832 [TBL] [Abstract][Full Text] [Related]
5. A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization. You B; Liu X; Jiang N; Sun Y J Am Chem Soc; 2016 Oct; 138(41):13639-13646. PubMed ID: 27652996 [TBL] [Abstract][Full Text] [Related]
6. Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials. Tatin A; Comminges C; Kokoh B; Costentin C; Robert M; Savéant JM Proc Natl Acad Sci U S A; 2016 May; 113(20):5526-9. PubMed ID: 27140621 [TBL] [Abstract][Full Text] [Related]
7. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting. Hayat A; Sohail M; Ali H; Taha TA; Qazi HIA; Ur Rahman N; Ajmal Z; Kalam A; Al-Sehemi AG; Wageh S; Amin MA; Palamanit A; Nawawi WI; Newair EF; Orooji Y Chem Rec; 2023 Feb; 23(2):e202200149. PubMed ID: 36408911 [TBL] [Abstract][Full Text] [Related]
8. Low pH electrolytic water splitting using earth-abundant metastable catalysts that self-assemble in situ. Bloor LG; Molina PI; Symes MD; Cronin L J Am Chem Soc; 2014 Feb; 136(8):3304-11. PubMed ID: 24499042 [TBL] [Abstract][Full Text] [Related]
9. A Redox Flow Battery-Integrated Rechargeable H Liu H; Yin Y; Cao X; Cheng H; Xie Y; Wu C J Am Chem Soc; 2024 Feb; 146(8):5274-5282. PubMed ID: 38363827 [TBL] [Abstract][Full Text] [Related]
11. pH-Universal Decoupled Water Electrolysis Enabled by Electrocatalytic Hydrogen Gas Capacitive Chemistry. Zhu Z; Jiang T; Sun J; Liu Z; Xie Z; Liu S; Meng Y; Peng Q; Wang W; Zhang K; Liu H; Yuan Y; Li K; Chen W JACS Au; 2023 Feb; 3(2):488-497. PubMed ID: 36873693 [TBL] [Abstract][Full Text] [Related]
12. Decoupled Redox Catalytic Hydrogen Production with a Robust Electrolyte-Borne Electron and Proton Carrier. Zhang F; Zhang H; Salla M; Qin N; Gao M; Ji Y; Huang S; Wu S; Zhang R; Lu Z; Wang Q J Am Chem Soc; 2021 Jan; 143(1):223-231. PubMed ID: 33332111 [TBL] [Abstract][Full Text] [Related]
13. Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamine-Based Battery Electrode. Ma Y; Dong X; Wang Y; Xia Y Angew Chem Int Ed Engl; 2018 Mar; 57(11):2904-2908. PubMed ID: 29384260 [TBL] [Abstract][Full Text] [Related]
14. Co-electrolysis of steam and CO2 in full-ceramic symmetrical SOECs: a strategy for avoiding the use of hydrogen as a safe gas. Torrell M; García-Rodríguez S; Morata A; Penelas G; Tarancón A Faraday Discuss; 2015; 182():241-55. PubMed ID: 26204959 [TBL] [Abstract][Full Text] [Related]
15. Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation. You B; Han G; Sun Y Chem Commun (Camb); 2018 Jun; 54(47):5943-5955. PubMed ID: 29761801 [TBL] [Abstract][Full Text] [Related]
16. Reconsidering Water Electrolysis: Producing Hydrogen at Cathodes Together with Selective Oxidation of n-Butylamine at Anodes. Xue S; Watzele S; Čolić V; Brandl K; Garlyyev B; Bandarenka AS ChemSusChem; 2017 Dec; 10(24):4812-4816. PubMed ID: 29064188 [TBL] [Abstract][Full Text] [Related]
17. Gas Crossover Regulation by Porosity-Controlled Glass Sheet Achieves Pure Hydrogen Production by Buffered Water Electrolysis at Neutral pH. Naito T; Shinagawa T; Nishimoto T; Takanabe K ChemSusChem; 2022 Feb; 15(3):e202102294. PubMed ID: 34907667 [TBL] [Abstract][Full Text] [Related]
18. Best Practice for Evaluating Electrocatalysts for Hydrogen Economy. Bird MA; Goodwin SE; Walsh DA ACS Appl Mater Interfaces; 2020 May; 12(18):20500-20506. PubMed ID: 32282181 [TBL] [Abstract][Full Text] [Related]
19. Large-Scale, Low-Cost, and High-Efficiency Water-Splitting System for Clean H Peng Y; Jiang K; Hill W; Lu Z; Yao H; Wang H ACS Appl Mater Interfaces; 2019 Jan; 11(4):3971-3977. PubMed ID: 30604959 [TBL] [Abstract][Full Text] [Related]
20. Organic Proton-Buffer Electrode to Separate Hydrogen and Oxygen Evolution in Acid Water Electrolysis. Ma Y; Guo Z; Dong X; Wang Y; Xia Y Angew Chem Int Ed Engl; 2019 Mar; 58(14):4622-4626. PubMed ID: 30706609 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]