BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 28654262)

  • 1. Machine Learning Consensus Scoring Improves Performance Across Targets in Structure-Based Virtual Screening.
    Ericksen SS; Wu H; Zhang H; Michael LA; Newton MA; Hoffmann FM; Wildman SA
    J Chem Inf Model; 2017 Jul; 57(7):1579-1590. PubMed ID: 28654262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Method of Structure-Based Virtual Screening via Interaction-Energy-Based Learning.
    Yasuo N; Sekijima M
    J Chem Inf Model; 2019 Mar; 59(3):1050-1061. PubMed ID: 30808172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MILCDock: Machine Learning Enhanced Consensus Docking for Virtual Screening in Drug Discovery.
    Morris CJ; Stern JA; Stark B; Christopherson M; Della Corte D
    J Chem Inf Model; 2022 Nov; 62(22):5342-5350. PubMed ID: 36342217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Docking and Scoring with Target-Specific Pose Classifier Succeeds in Native-Like Pose Identification But Not Binding Affinity Prediction in the CSAR 2014 Benchmark Exercise.
    Politi R; Convertino M; Popov K; Dokholyan NV; Tropsha A
    J Chem Inf Model; 2016 Jun; 56(6):1032-41. PubMed ID: 27050767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-Ligand Empirical Interaction Components for Virtual Screening.
    Yan Y; Wang W; Sun Z; Zhang JZH; Ji C
    J Chem Inf Model; 2017 Aug; 57(8):1793-1806. PubMed ID: 28678484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving Structure-Based Virtual Screening with Ensemble Docking and Machine Learning.
    Ricci-Lopez J; Aguila SA; Gilson MK; Brizuela CA
    J Chem Inf Model; 2021 Nov; 61(11):5362-5376. PubMed ID: 34652141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of compound ranking for structure-based virtual ligand screening using an established FRED-Surflex consensus approach.
    Du J; Bleylevens IW; Bitorina AV; Wichapong K; Nicolaes GA
    Chem Biol Drug Des; 2014 Jan; 83(1):37-51. PubMed ID: 23941463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting virtual screening enrichments with data fusion: coalescing hits from two-dimensional fingerprints, shape, and docking.
    Sastry GM; Inakollu VS; Sherman W
    J Chem Inf Model; 2013 Jul; 53(7):1531-42. PubMed ID: 23782297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy.
    Cross JB; Thompson DC; Rai BK; Baber JC; Fan KY; Hu Y; Humblet C
    J Chem Inf Model; 2009 Jun; 49(6):1455-74. PubMed ID: 19476350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Development of Target-Specific Pose Filter Ensembles To Boost Ligand Enrichment for Structure-Based Virtual Screening.
    Xia J; Hsieh JH; Hu H; Wu S; Wang XS
    J Chem Inf Model; 2017 Jun; 57(6):1414-1425. PubMed ID: 28511009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of consensus scoring methods for AutoDock Vina, smina and idock.
    Masters L; Eagon S; Heying M
    J Mol Graph Model; 2020 May; 96():107532. PubMed ID: 31991303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using consensus-shape clustering to identify promiscuous ligands and protein targets and to choose the right query for shape-based virtual screening.
    PĂ©rez-Nueno VI; Ritchie DW
    J Chem Inf Model; 2011 Jun; 51(6):1233-48. PubMed ID: 21604699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Docking-Based Virtual Screening Ability by Integrating Multiple Energy Auxiliary Terms from Molecular Docking Scoring.
    Ye WL; Shen C; Xiong GL; Ding JJ; Lu AP; Hou TJ; Cao DS
    J Chem Inf Model; 2020 Sep; 60(9):4216-4230. PubMed ID: 32352294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational protein-ligand docking and virtual drug screening with the AutoDock suite.
    Forli S; Huey R; Pique ME; Sanner MF; Goodsell DS; Olson AJ
    Nat Protoc; 2016 May; 11(5):905-19. PubMed ID: 27077332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical Model Selection for Prospective Virtual Screening.
    Liu S; Alnammi M; Ericksen SS; Voter AF; Ananiev GE; Keck JL; Hoffmann FM; Wildman SA; Gitter A
    J Chem Inf Model; 2019 Jan; 59(1):282-293. PubMed ID: 30500183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Shape Similarity in Pose Selection and Virtual Screening in CSARdock2014 Exercise.
    Kumar A; Zhang KY
    J Chem Inf Model; 2016 Jun; 56(6):965-73. PubMed ID: 26247231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beware of machine learning-based scoring functions-on the danger of developing black boxes.
    Gabel J; Desaphy J; Rognan D
    J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ranking targets in structure-based virtual screening of three-dimensional protein libraries: methods and problems.
    Kellenberger E; Foata N; Rognan D
    J Chem Inf Model; 2008 May; 48(5):1014-25. PubMed ID: 18412328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.