BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28654279)

  • 1. Access to Amide from Aldimine via Aerobic Oxidative Carbene Catalysis and LiCl as Cooperative Lewis Acid.
    Wang G; Fu Z; Huang W
    Org Lett; 2017 Jul; 19(13):3362-3365. PubMed ID: 28654279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-Heterocyclic carbene (NHC)-catalyzed oxidation of unactivated aldimines to amides
    Ramarao J; Yadav S; Satyam K; Suresh S
    RSC Adv; 2022 Mar; 12(13):7621-7625. PubMed ID: 35424774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenazinium salt-catalyzed aerobic oxidative amidation of aromatic aldehydes.
    Leow D
    Org Lett; 2014 Nov; 16(21):5812-5. PubMed ID: 25350690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric Carbene-Catalyzed Oxidation of Functionalized Aldimines as 1,4-Dipoles.
    Wang G; Zhang QC; Wei C; Zhang Y; Zhang L; Huang J; Wei D; Fu Z; Huang W
    Angew Chem Int Ed Engl; 2021 Mar; 60(14):7913-7919. PubMed ID: 33443785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective Synthesis of Substituted δ-Lactones by Cooperative Oxidative N-Heterocyclic Carbene and Lewis Acid Catalysis.
    Bera S; Daniliuc CG; Studer A
    Org Lett; 2015 Oct; 17(20):4940-3. PubMed ID: 26447330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative NHC Catalysis for the Generation of Imidoyl Azoliums: Synthesis of Benzoxazoles.
    Patra A; James A; Das TK; Biju AT
    J Org Chem; 2018 Dec; 83(23):14820-14826. PubMed ID: 30371086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric synthesis of highly substituted β-lactones through oxidative carbene catalysis with LiCl as cooperative Lewis acid.
    Bera S; Samanta RC; Daniliuc CG; Studer A
    Angew Chem Int Ed Engl; 2014 Sep; 53(36):9622-6. PubMed ID: 25044490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative amidation and azidation of aldehydes by NHC catalysis.
    De Sarkar S; Studer A
    Org Lett; 2010 May; 12(9):1992-5. PubMed ID: 20359171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Esters as Alkynyl Acyl Ammonium and Azolium Precursors: A Formal [2 + 3] Annulation with Amidomalonates via Lewis Base/Lewis Acid Cooperative Catalysis.
    Cao J; Sun K; Dong S; Lu T; Dong Y; Du D
    Org Lett; 2017 Dec; 19(24):6724-6727. PubMed ID: 29192785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative γ-addition of enals to trifluoromethyl ketones: enantioselectivity control via Lewis acid/N-heterocyclic carbene cooperative catalysis.
    Mo J; Chen X; Chi YR
    J Am Chem Soc; 2012 May; 134(21):8810-3. PubMed ID: 22571795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of Amides from Imines via Cyanide-Mediated Metal-Free Aerobic Oxidation.
    Seo HA; Cho YH; Lee YS; Cheon CH
    J Org Chem; 2015 Dec; 80(24):11993-8. PubMed ID: 26580330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation, Oxidation, and Fate of the Breslow Intermediate in the N-Heterocyclic Carbene-Catalyzed Aerobic Oxidation of Aldehydes.
    Bortolini O; Chiappe C; Fogagnolo M; Massi A; Pomelli CS
    J Org Chem; 2017 Jan; 82(1):302-312. PubMed ID: 27966944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lewis acid-Lewis acid heterobimetallic cooperative catalysis: mechanistic studies and application in enantioselective aza-Michael reaction.
    Yamagiwa N; Qin H; Matsunaga S; Shibasaki M
    J Am Chem Soc; 2005 Sep; 127(38):13419-27. PubMed ID: 16173776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amide bond formation through iron-catalyzed oxidative amidation of tertiary amines with anhydrides.
    Li Y; Ma L; Jia F; Li Z
    J Org Chem; 2013 Jun; 78(11):5638-46. PubMed ID: 23668222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-Heterocyclic Carbene/Lewis Acid Catalyzed Enantioselective Aerobic Annulation of α,β-Unsaturated Aldehydes with 1,3-Dicarbonyl Compounds.
    Xie D; Shen D; Chen Q; Zhou J; Zeng X; Zhong G
    J Org Chem; 2016 Jul; 81(14):6136-41. PubMed ID: 27337175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper-catalyzed oxidative amidation of aldehydes with amine salts: synthesis of primary, secondary, and tertiary amides.
    Ghosh SC; Ngiam JS; Seayad AM; Tuan DT; Chai CL; Chen A
    J Org Chem; 2012 Sep; 77(18):8007-15. PubMed ID: 22894712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auto-tandem catalysis: synthesis of 4H-pyrido[1,2-a]pyrimidin-4-ones via copper-catalyzed aza-Michael addition-aerobic dehydrogenation-intramolecular amidation.
    Yang Y; Shu WM; Yu SB; Ni F; Gao M; Wu AX
    Chem Commun (Camb); 2013 Feb; 49(17):1729-31. PubMed ID: 23340739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-Heterocyclic Carbene-Mediated Microfluidic Oxidative Electrosynthesis of Amides from Aldehydes.
    Green RA; Pletcher D; Leach SG; Brown RC
    Org Lett; 2016 Mar; 18(5):1198-201. PubMed ID: 26886178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cu-catalyzed oxidative amidation of propiolic acids under air via decarboxylative coupling.
    Jia W; Jiao N
    Org Lett; 2010 May; 12(9):2000-3. PubMed ID: 20361747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron-catalyzed oxidative amidation of tertiary amines with aldehydes.
    Li Y; Jia F; Li Z
    Chemistry; 2013 Jan; 19(1):82-6. PubMed ID: 23208956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.