These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28654423)

  • 1. Daily wrist activity classification using a smart band.
    Nguyen ND; Truong PH; Jeong GM
    Physiol Meas; 2017 Aug; 38(9):L10-L16. PubMed ID: 28654423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SVM-based multimodal classification of activities of daily living in Health Smart Homes: sensors, algorithms, and first experimental results.
    Fleury A; Vacher M; Noury N
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):274-83. PubMed ID: 20007037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Robust Step Detection Algorithm and Walking Distance Estimation Based on Daily Wrist Activity Recognition Using a Smart Band.
    Trong Bui D; Nguyen ND; Jeong GM
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29941842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors.
    Shoaib M; Bosch S; Incel OD; Scholten H; Havinga PJ
    Sensors (Basel); 2016 Mar; 16(4):426. PubMed ID: 27023543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. User-Independent Recognition of Sports Activities From a Single Wrist-Worn Accelerometer: A Template-Matching-Based Approach.
    Margarito J; Helaoui R; Bianchi AM; Sartor F; Bonomi AG
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):788-96. PubMed ID: 26302509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of Activity Classification Algorithms in Free-Living Older Adults.
    Sasaki JE; Hickey AM; Staudenmayer JW; John D; Kent JA; Freedson PS
    Med Sci Sports Exerc; 2016 May; 48(5):941-50. PubMed ID: 26673129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data.
    Nef T; Urwyler P; Büchler M; Tarnanas I; Stucki R; Cazzoli D; Müri R; Mosimann U
    Sensors (Basel); 2015 May; 15(5):11725-40. PubMed ID: 26007727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classifying household and locomotive activities using a triaxial accelerometer.
    Oshima Y; Kawaguchi K; Tanaka S; Ohkawara K; Hikihara Y; Ishikawa-Takata K; Tabata I
    Gait Posture; 2010 Mar; 31(3):370-4. PubMed ID: 20138524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency domain approach for activity classification using accelerometer.
    Chung WY; Purwar A; Sharma A
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1120-3. PubMed ID: 19162860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Activity Recognition Framework Deploying the Random Forest Classifier and A Single Optical Heart Rate Monitoring and Triaxial AccelerometerWrist-Band.
    Mehrang S; Pietilä J; Korhonen I
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29470385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity.
    van Hees VT; Gorzelniak L; Dean León EC; Eder M; Pias M; Taherian S; Ekelund U; Renström F; Franks PW; Horsch A; Brage S
    PLoS One; 2013; 8(4):e61691. PubMed ID: 23626718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognizing Manual Activities Using Wearable Inertial Measurement Units: Clinical Application for Outcome Measurement.
    El Khoury G; Penta M; Barbier O; Libouton X; Thonnard JL; Lefèvre P
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34067190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Accurately Can Your Wrist Device Recognize Daily Activities and Detect Falls?
    Gjoreski M; Gjoreski H; Luštrek M; Gams M
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27258282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probabilistic learning from incomplete data for recognition of activities of daily living in smart homes.
    Zhang S; McClean SI; Scotney BW
    IEEE Trans Inf Technol Biomed; 2012 May; 16(3):454-62. PubMed ID: 22411044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical activity classification using the GENEA wrist-worn accelerometer.
    Zhang S; Rowlands AV; Murray P; Hurst TL
    Med Sci Sports Exerc; 2012 Apr; 44(4):742-8. PubMed ID: 21988935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm.
    Ohkawara K; Oshima Y; Hikihara Y; Ishikawa-Takata K; Tabata I; Tanaka S
    Br J Nutr; 2011 Jun; 105(11):1681-91. PubMed ID: 21262061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards pulse rate parametrization during free-living activities using smart wristband.
    Rapalis A; Petrėnas A; Šimaitytė M; Bailón R; Marozas V
    Physiol Meas; 2018 May; 39(5):055007. PubMed ID: 29851652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fabric wrist patch sensor for continuous and comprehensive monitoring of the cardiovascular system.
    Kwonjoon Lee ; Kiseok Song ; Taehwan Roh ; Hoi-Jun Yoo
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6070-6073. PubMed ID: 28269637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.