BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 28654724)

  • 1. Metal-Free Oxidation of Glycerol over Nitrogen-Containing Carbon Nanotubes.
    Gupta N; Khavryuchenko O; Villa A; Su D
    ChemSusChem; 2017 Aug; 10(15):3030-3034. PubMed ID: 28654724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for selective oxidation.
    Chizari K; Deneuve A; Ersen O; Florea I; Liu Y; Edouard D; Janowska I; Begin D; Pham-Huu C
    ChemSusChem; 2012 Jan; 5(1):102-8. PubMed ID: 22134970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-free nitrogen-containing carbon nanotubes prepared from triazole and tetrazole derivatives show high electrocatalytic activity towards the oxygen reduction reaction in alkaline media.
    Morozan A; Jégou P; Pinault M; Campidelli S; Jousselme B; Palacin S
    ChemSusChem; 2012 Apr; 5(4):647-51. PubMed ID: 22389330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen-promoted self-assembly of N-doped carbon nanotubes and their intrinsic catalysis for oxygen reduction in fuel cells.
    Wang Z; Jia R; Zheng J; Zhao J; Li L; Song J; Zhu Z
    ACS Nano; 2011 Mar; 5(3):1677-84. PubMed ID: 21309566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing.
    Xu X; Jiang S; Hu Z; Liu S
    ACS Nano; 2010 Jul; 4(7):4292-8. PubMed ID: 20565121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renewable hydrogen and carbon nanotubes from biodiesel waste glycerol.
    Wu C; Wang Z; Williams PT; Huang J
    Sci Rep; 2013 Sep; 3():2742. PubMed ID: 24067754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. O2 and H2O2 transformation steps for the oxygen reduction reaction catalyzed by graphitic nitrogen-doped carbon nanotubes in acidic electrolyte from first principles calculations.
    Li Y; Zhong G; Yu H; Wang H; Peng F
    Phys Chem Chem Phys; 2015 Sep; 17(34):21950-9. PubMed ID: 26234475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The catalytic pathways of hydrohalogenation over metal-free nitrogen-doped carbon nanotubes.
    Zhou K; Li B; Zhang Q; Huang JQ; Tian GL; Jia JC; Zhao MQ; Luo GH; Su DS; Wei F
    ChemSusChem; 2014 Mar; 7(3):723-8. PubMed ID: 24458768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Nitrogen-Doped Carbon Catalyst for Electrochemical CO
    Jhong HM; Tornow CE; Smid B; Gewirth AA; Lyth SM; Kenis PJ
    ChemSusChem; 2017 Mar; 10(6):1094-1099. PubMed ID: 27791338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction.
    Yu D; Zhang Q; Dai L
    J Am Chem Soc; 2010 Nov; 132(43):15127-9. PubMed ID: 20929222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transesterification of triglycerides using nitrogen-functionalized carbon nanotubes.
    Villa A; Tessonnier JP; Majoulet O; Su DS; Schlögl R
    ChemSusChem; 2010 Feb; 3(2):241-5. PubMed ID: 19908273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide.
    Xu J; Kan Y; Huang R; Zhang B; Wang B; Wu KH; Lin Y; Sun X; Li Q; Centi G; Su D
    ChemSusChem; 2016 May; 9(10):1085-9. PubMed ID: 27100272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient preparation of nitrogen-doped lignin-based carbon nanotubes and the selectivity of nitrogen speciation for photothermal therapy.
    Peng Y; Guo B; Wang W; Yu P; Wu Z; Shao L; Luo W
    Int J Biol Macromol; 2023 May; 238():124127. PubMed ID: 36958448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convenient immobilization of Pt-Sn bimetallic catalysts on nitrogen-doped carbon nanotubes for direct alcohol electrocatalytic oxidation.
    Wang X; Xue H; Yang L; Wang H; Zang P; Qin X; Wang Y; Ma Y; Wu Q; Hu Z
    Nanotechnology; 2011 Sep; 22(39):395401. PubMed ID: 21891845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of metal-catalyst-free nitrogen-doped metallic single-wall carbon nanotubes.
    Li JC; Hou PX; Zhang L; Liu C; Cheng HM
    Nanoscale; 2014 Oct; 6(20):12065-70. PubMed ID: 25189467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Easy conversion of protein-rich enoki mushroom biomass to a nitrogen-doped carbon nanomaterial as a promising metal-free catalyst for oxygen reduction reaction.
    Guo C; Liao W; Li Z; Sun L; Chen C
    Nanoscale; 2015 Oct; 7(38):15990-8. PubMed ID: 26367816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes?
    Zhao Y; Yang L; Chen S; Wang X; Ma Y; Wu Q; Jiang Y; Qian W; Hu Z
    J Am Chem Soc; 2013 Jan; 135(4):1201-4. PubMed ID: 23317479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity.
    Chen P; Xiao TY; Qian YH; Li SS; Yu SH
    Adv Mater; 2013 Jun; 25(23):3192-6. PubMed ID: 23657839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Walled Carbon Nanotubes as a Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde.
    Wang J; Huang R; Feng Z; Liu H; Su D
    ChemSusChem; 2016 Jul; 9(14):1820-6. PubMed ID: 27282126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indirect electrocatalytic degradation of cyanide at nitrogen-doped carbon nanotube electrodes.
    Wiggins-Camacho JD; Stevenson KJ
    Environ Sci Technol; 2011 Apr; 45(8):3650-6. PubMed ID: 21413761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.