These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 28654769)

  • 1. Structural and functional characterization of the triticale (x Triticosecale Wittm.) phytocystatin TrcC-8 and its dimerization-dependent inhibitory activity.
    Prabucka B; Mielecki M; Chojnacka M; Bielawski W; Czarnocki-Cieciura M; Orzechowski S
    Phytochemistry; 2017 Oct; 142():1-10. PubMed ID: 28654769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of expression and inhibitory activity of a TrcC-6 phytocystatin present in developing and germinating seeds of triticale (×Triticosecale Wittm.).
    Simińska J; Orzechowski S; Bielawski W
    Plant Physiol Biochem; 2015 Nov; 96():209-16. PubMed ID: 26298807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A triticale water-deficit-inducible phytocystatin inhibits endogenous cysteine proteinases in vitro.
    Chojnacka M; Szewińska J; Mielecki M; Nykiel M; Imai R; Bielawski W; Orzechowski S
    J Plant Physiol; 2015 Feb; 174():161-5. PubMed ID: 25462979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of tarocystatin-papain complex: implications for the inhibition property of group-2 phytocystatins.
    Chu MH; Liu KL; Wu HY; Yeh KW; Cheng YS
    Planta; 2011 Aug; 234(2):243-54. PubMed ID: 21416241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rice bifunctional phytocystatin is a dual modulator of legumain and papain-like proteases.
    Christoff AP; Passaia G; Salvati C; Alves-Ferreira M; Margis-Pinheiro M; Margis R
    Plant Mol Biol; 2016 Sep; 92(1-2):193-207. PubMed ID: 27325119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Cloning and Expression Analysis of Triticale Phytocystatins During Development and Germination of Seeds.
    Szewińska J; Zdunek-Zastocka E; Pojmaj M; Bielawski W
    Plant Mol Biol Report; 2012; 30(4):867-877. PubMed ID: 24415837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physico-chemical and in-silico analysis of a phytocystatin purified from Brassica juncea cultivar RoAgro 5444.
    Khan S; Ahmad S; Siddiqi MI; Bano B
    Biochem Cell Biol; 2016 Dec; 94(6):584-596. PubMed ID: 27845561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases.
    Martinez M; Diaz-Mendoza M; Carrillo L; Diaz I
    FEBS Lett; 2007 Jun; 581(16):2914-8. PubMed ID: 17543305
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Santos NP; Brandstetter H; Dall E
    Biochemistry; 2023 Dec; 62(23):3420-3429. PubMed ID: 37989209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The diversity of rice phytocystatins.
    Christoff AP; Margis R
    Mol Genet Genomics; 2014 Dec; 289(6):1321-30. PubMed ID: 25098420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The roles of cysteine proteases and phytocystatins in development and germination of cereal seeds.
    Szewińska J; Simińska J; Bielawski W
    J Plant Physiol; 2016 Dec; 207():10-21. PubMed ID: 27771502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and biochemical characterization of phytocystatin from Brassica alba.
    Ahmed A; Shamsi A; Bano B
    J Mol Recognit; 2016 May; 29(5):223-31. PubMed ID: 26748819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of inhibitory mechanism and antifungal activity between group-1 and group-2 phytocystatins from taro (Colocasia esculenta).
    Wang KM; Kumar S; Cheng YS; Venkatagiri S; Yang AH; Yeh KW
    FEBS J; 2008 Oct; 275(20):4980-9. PubMed ID: 18785929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cysteine protease and cystatin expression and activity during soybean nodule development and senescence.
    van Wyk SG; Du Plessis M; Cullis CA; Kunert KJ; Vorster BJ
    BMC Plant Biol; 2014 Nov; 14():294. PubMed ID: 25404209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico analysis of sequential, structural and functional diversity of wheat cystatins and its implication in plant defense.
    Dutt S; Singh VK; Marla SS; Kumar A
    Genomics Proteomics Bioinformatics; 2010 Mar; 8(1):42-56. PubMed ID: 20451161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical and PMF MALDI-TOF analyses of two novel papain-like plant proteinases.
    Obregón WD; Liggieri CS; Morcelle SR; Trejo SA; Avilés FX; Priolo NS
    Protein Pept Lett; 2009; 16(11):1323-33. PubMed ID: 20001923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and mechanistic insights into a novel non-competitive Kunitz trypsin inhibitor from Adenanthera pavonina L. seeds with double activity toward serine- and cysteine-proteinases.
    Migliolo L; de Oliveira AS; Santos EA; Franco OL; de Sales MP
    J Mol Graph Model; 2010 Sep; 29(2):148-56. PubMed ID: 20816329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review: Unraveling the origin of the structural and functional diversity of plant cystatins.
    Balbinott N; Margis R
    Plant Sci; 2022 Aug; 321():111342. PubMed ID: 35696902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grafting of features of cystatins C or B into the N-terminal region or second binding loop of cystatin A (stefin A) substantially enhances inhibition of cysteine proteinases.
    Pavlova A; Björk I
    Biochemistry; 2003 Sep; 42(38):11326-33. PubMed ID: 14503883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domain swapping in N-truncated human cystatin C.
    Janowski R; Abrahamson M; Grubb A; Jaskolski M
    J Mol Biol; 2004 Jul; 341(1):151-60. PubMed ID: 15312769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.