These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 28654782)
1. Revisiting blood-brain barrier: A chromatographic approach. Subirats X; Muñoz-Pascual L; Abraham MH; Rosés M J Pharm Biomed Anal; 2017 Oct; 145():98-109. PubMed ID: 28654782 [TBL] [Abstract][Full Text] [Related]
2. Characterization of microemulsion liquid chromatography systems by solvation parameter model and comparison with other physicochemical and biological processes. Liu J; Sun J; Wang Y; Liu X; Sun Y; Xu H; He Z J Chromatogr A; 2007 Sep; 1164(1-2):129-38. PubMed ID: 17645883 [TBL] [Abstract][Full Text] [Related]
3. The use of biopartitioning micellar chromatography and immobilized artificial membrane column for in silico and in vitro determination of blood-brain barrier penetration of phenols. Stępnik KE; Malinowska I J Chromatogr A; 2013 Apr; 1286():127-36. PubMed ID: 23506703 [TBL] [Abstract][Full Text] [Related]
4. Microemulsion electrokinetic chromatography as a suitable tool for lipophilicity determination of acidic, neutral, and basic compounds. Subirats X; Yuan HP; Chaves V; Marzal N; Rosés M Electrophoresis; 2016 Jul; 37(14):2010-6. PubMed ID: 27126602 [TBL] [Abstract][Full Text] [Related]
5. Determination of the lipophilicity (log P o/w) of organic compounds by microemulsion liquid chromatography. Xu L; Li L; Huang J; Yu S; Wang J; Li N J Pharm Biomed Anal; 2015 Jan; 102():409-16. PubMed ID: 25459940 [TBL] [Abstract][Full Text] [Related]
6. Hydrogen bonding. 32. An analysis of water-octanol and water-alkane partitioning and the delta log P parameter of seiler. Abraham MH; Chadha HS; Whiting GS; Mitchell RC J Pharm Sci; 1994 Aug; 83(8):1085-100. PubMed ID: 7983591 [TBL] [Abstract][Full Text] [Related]
7. Lecithin liposomes and microemulsions as new chromatographic phases. Amézqueta S; Fernández-Pumarega A; Farré S; Luna D; Fuguet E; Rosés M J Chromatogr A; 2020 Jan; 1611():460596. PubMed ID: 31610920 [TBL] [Abstract][Full Text] [Related]
8. Predicting blood-brain barrier penetration of drugs by microemulsion liquid chromatography with corrected retention factor. Liu J; Sun J; Sui X; Wang Y; Hou Y; He Z J Chromatogr A; 2008 Jul; 1198-1199():164-72. PubMed ID: 18541248 [TBL] [Abstract][Full Text] [Related]
9. Immobilized Artificial Membrane HPLC Derived Parameters vs PAMPA-BBB Data in Estimating in Situ Measured Blood-Brain Barrier Permeation of Drugs. Grumetto L; Russo G; Barbato F Mol Pharm; 2016 Aug; 13(8):2808-16. PubMed ID: 27377191 [TBL] [Abstract][Full Text] [Related]
10. The factors that influence permeation across the blood-brain barrier. Abraham MH Eur J Med Chem; 2004 Mar; 39(3):235-40. PubMed ID: 15051171 [TBL] [Abstract][Full Text] [Related]
11. Lipophilic and polar interaction forces between acidic drugs and membrane phospholipids encoded in IAM-HPLC indexes: their role in membrane partition and relationships with BBB permeation data. Grumetto L; Carpentiero C; Di Vaio P; Frecentese F; Barbato F J Pharm Biomed Anal; 2013 Mar; 75():165-72. PubMed ID: 23261809 [TBL] [Abstract][Full Text] [Related]
12. Physicochemical determinants of passive membrane permeability: role of solute hydrogen-bonding potential and volume. Goodwin JT; Conradi RA; Ho NF; Burton PS J Med Chem; 2001 Oct; 44(22):3721-9. PubMed ID: 11606137 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen-bonding. Part 36. Determination of blood brain distribution using octanol-water partition coefficients. Abraham MH; Chadha HS; Mitchell RC Drug Des Discov; 1995 Nov; 13(2):123-31. PubMed ID: 8872456 [TBL] [Abstract][Full Text] [Related]
14. Establishment of quantitative retention-activity model by optimized microemulsion liquid chromatography. Xu L; Gao H; Li L; Li Y; Wang L; Gao C; Li N J Chromatogr A; 2016 Dec; 1478():10-18. PubMed ID: 27923476 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the Goss-modified solvation parameter model for the characterization of biphasic systems and descriptor assignments. Poole CF J Chromatogr A; 2024 Aug; 1730():465143. PubMed ID: 38991600 [TBL] [Abstract][Full Text] [Related]
16. Lipophilic and electrostatic forces encoded in IAM-HPLC indexes of basic drugs: their role in membrane partition and their relationships with BBB passage data. Grumetto L; Carpentiero C; Barbato F Eur J Pharm Sci; 2012 Apr; 45(5):685-92. PubMed ID: 22306648 [TBL] [Abstract][Full Text] [Related]
17. Potential of biopartitioning micellar chromatography as an in vitro technique for predicting drug penetration across the blood-brain barrier. Escuder-Gilabert L; Molero-Monfort M; Villanueva-Camañas RM; Sagrado S; Medina-Hernández MJ J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Aug; 807(2):193-201. PubMed ID: 15203029 [TBL] [Abstract][Full Text] [Related]
18. Model for the partition of neutral compounds between n-heptane and formamide. Karunasekara T; Poole CF J Sep Sci; 2010 Apr; 33(8):1167-73. PubMed ID: 20187036 [TBL] [Abstract][Full Text] [Related]
19. Characterization of solute-solvent interactions in liquid chromatography systems: A fast method based on Abraham's linear solvation energy relationships. Redón L; Safar Beiranvand M; Subirats X; Rosés M Anal Chim Acta; 2023 Oct; 1277():341672. PubMed ID: 37604624 [TBL] [Abstract][Full Text] [Related]