BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 28654791)

  • 1. Influence of natural organic matter (NOM) coatings on nanoparticle adsorption onto supported lipid bilayers.
    Bo Z; Avsar SY; Corliss MK; Chung M; Cho NJ
    J Hazard Mater; 2017 Oct; 339():264-273. PubMed ID: 28654791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study.
    Bailey CM; Kamaloo E; Waterman KL; Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015; 203-204():51-61. PubMed ID: 26042544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of membrane surface charge on adsorption of complement proteins onto supported lipid bilayers.
    Yorulmaz S; Jackman JA; Hunziker W; Cho NJ
    Colloids Surf B Biointerfaces; 2016 Dec; 148():270-277. PubMed ID: 27616067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonspecific adsorption of charged quantum dots on supported zwitterionic lipid bilayers: real-time monitoring by quartz crystal microbalance with dissipation.
    Zhang X; Yang S
    Langmuir; 2011 Mar; 27(6):2528-35. PubMed ID: 21294560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles.
    Furman O; Usenko S; Lau BL
    Environ Sci Technol; 2013 Feb; 47(3):1349-56. PubMed ID: 23298221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time evaluation of natural organic matter deposition processes onto model environmental surfaces.
    Li W; Liao P; Oldham T; Jiang Y; Pan C; Yuan S; Fortner JD
    Water Res; 2018 Feb; 129():231-239. PubMed ID: 29153876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between dissolved natural organic matter and adsorbed DNA and their effect on natural transformation of Azotobacter vinelandii.
    Lu N; Mylon SE; Kong R; Bhargava R; Zilles JL; Nguyen TH
    Sci Total Environ; 2012 Jun; 426():430-5. PubMed ID: 22542236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipophilicity of Cationic Ligands Promotes Irreversible Adsorption of Nanoparticles to Lipid Bilayers.
    Lochbaum CA; Chew AK; Zhang X; Rotello V; Van Lehn RC; Pedersen JA
    ACS Nano; 2021 Apr; 15(4):6562-6572. PubMed ID: 33818061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA and DNA interactions with zwitterionic and charged lipid membranes - a DSC and QCM-D study.
    Michanek A; Kristen N; Höök F; Nylander T; Sparr E
    Biochim Biophys Acta; 2010 Apr; 1798(4):829-38. PubMed ID: 20036213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpreting the effects of natural organic matter on antimicrobial activity of Ag
    Liu Y; Yang T; Wang L; Huang Z; Li J; Cheng H; Jiang J; Pang S; Qi J; Ma J
    Water Res; 2018 Nov; 145():12-20. PubMed ID: 30118974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency.
    Lesniak A; Salvati A; Santos-Martinez MJ; Radomski MW; Dawson KA; Åberg C
    J Am Chem Soc; 2013 Jan; 135(4):1438-44. PubMed ID: 23301582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of humic and fulvic acids on aggregation of aqu/nC60 nanoparticles.
    Zhang W; Rattanaudompol US; Li H; Bouchard D
    Water Res; 2013 Apr; 47(5):1793-802. PubMed ID: 23374256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption and disruption of lipid bilayers by nanoscale protein aggregates.
    Hirano A; Yoshikawa H; Matsushita S; Yamada Y; Shiraki K
    Langmuir; 2012 Feb; 28(8):3887-95. PubMed ID: 22276744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of nanoparticle-lipid membrane interactions using QCM-D.
    Frost R; Svedhem S
    Methods Mol Biol; 2013; 991():127-37. PubMed ID: 23546665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of lignin-derived dimer and eugenol-functionalized silica nanoparticles with supported lipid bilayers.
    Moradipour M; Chase EK; Khan MA; Asare SO; Lynn BC; Rankin SE; Knutson BL
    Colloids Surf B Biointerfaces; 2020 Jul; 191():111028. PubMed ID: 32305621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of molecular weight-dependent physicochemical heterogeneity of natural organic matter on the aggregation of fullerene nanoparticles in mono- and di-valent electrolyte solutions.
    Shen MH; Yin YG; Booth A; Liu JF
    Water Res; 2015 Mar; 71():11-20. PubMed ID: 25577691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of extracellular polymeric substances on magnetic iron oxide nanoparticles stability and the removal of microcystin-LR in aqueous environments.
    Yang Y; Hou J; Wang P; Wang C; Miao L; Ao Y; Wang X; Lv B; You G; Liu Z; Shao Y
    Ecotoxicol Environ Saf; 2018 Feb; 148():89-96. PubMed ID: 29031879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semihydrophobic nanoparticle-induced disruption of supported lipid bilayers: specific ion effect.
    Jing B; Abot RC; Zhu Y
    J Phys Chem B; 2014 Nov; 118(46):13175-82. PubMed ID: 25337793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Sensor Coating and Topography on Protein and Nanoparticle Interaction with Supported Lipid Bilayers.
    Yin H; Mensch AC; Lochbaum CA; Foreman-Ortiz IU; Caudill ER; Hamers RJ; Pedersen JA
    Langmuir; 2021 Feb; 37(7):2256-2267. PubMed ID: 33560854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystalline phase and surface coating of Al
    Zhu B; Wei X; Song J; Zhang Q; Jiang W
    Chemosphere; 2020 May; 247():125876. PubMed ID: 31978652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.