These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 28654791)

  • 21. Probing the Interaction of Dielectric Nanoparticles with Supported Lipid Membrane Coatings on Nanoplasmonic Arrays.
    Ferhan AR; Ma GJ; Jackman JA; Sut TN; Park JH; Cho NJ
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanistic predictions of the influence of collagen-binding domain sequences on human LL37 interactions with model lipids using quartz crystal microbalance with dissipation.
    Lozeau LD; Rolle MW; Camesano TA
    Biointerphases; 2019 Apr; 14(2):021006. PubMed ID: 31039613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coverage and disruption of phospholipid membranes by oxide nanoparticles.
    Pera H; Nolte TM; Leermakers FA; Kleijn JM
    Langmuir; 2014 Dec; 30(48):14581-90. PubMed ID: 25390582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neutron Reflectometry reveals the interaction between functionalized SPIONs and the surface of lipid bilayers.
    Luchini A; Gerelli Y; Fragneto G; Nylander T; Pálsson GK; Appavou MS; Paduano L
    Colloids Surf B Biointerfaces; 2017 Mar; 151():76-87. PubMed ID: 27987458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmonic Nanoparticle-Interfaced Lipid Bilayer Membranes.
    Kim S; Seo J; Park HH; Kim N; Oh JW; Nam JM
    Acc Chem Res; 2019 Oct; 52(10):2793-2805. PubMed ID: 31553568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing the Interaction between Nanoparticles and Lipid Membranes by Quartz Crystal Microbalance with Dissipation Monitoring.
    Yousefi N; Tufenkji N
    Front Chem; 2016; 4():46. PubMed ID: 27995125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immobilization Strategies for Functional Complement Convertase Assembly at Lipid Membrane Interfaces.
    Yorulmaz Avsar S; Jackman JA; Kim MC; Yoon BK; Hunziker W; Cho NJ
    Langmuir; 2017 Jul; 33(29):7332-7342. PubMed ID: 28683197
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrical method to quantify nanoparticle interaction with lipid bilayers.
    Carney RP; Astier Y; Carney TM; Voïtchovsky K; Jacob Silva PH; Stellacci F
    ACS Nano; 2013 Feb; 7(2):932-42. PubMed ID: 23267695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of lipid membrane based assays to accurately predict the transfection efficiency of cell-penetrating peptide-based gene nanoparticles.
    Alhakamy NA; Alaofi AL; Ahmed OAA; Fahmy UA; Md S; Abdulaal WH; Alfaleh MA; Chakraborty A; Berkland CJ; Dhar P
    Int J Pharm; 2020 Apr; 580():119221. PubMed ID: 32165227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions and stability of silver nanoparticles in the aqueous phase: Influence of natural organic matter (NOM) and ionic strength.
    Delay M; Dolt T; Woellhaf A; Sembritzki R; Frimmel FH
    J Chromatogr A; 2011 Jul; 1218(27):4206-12. PubMed ID: 21435646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of the adsorption characteristics of natural organic matter from typical Chinese surface waters onto alumina using quartz crystal microbalance with dissipation.
    Yan M; Wang D; Xie J; Liu C; Cheng J; Chow CW; van Leeuwen J
    J Hazard Mater; 2012 May; 215-216():115-21. PubMed ID: 22444034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles.
    Gao J; Powers K; Wang Y; Zhou H; Roberts SM; Moudgil BM; Koopman B; Barber DS
    Chemosphere; 2012 Sep; 89(1):96-101. PubMed ID: 22583785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward More Free-Floating Model Cell Membranes: Method Development and Application to Their Interaction with Nanoparticles.
    Yousefi N; Wargenau A; Tufenkji N
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14339-48. PubMed ID: 27211513
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of sunlight and humic acid on the deposition kinetics of aqueous fullerene nanoparticles (nC60).
    Qu X; Alvarez PJ; Li Q
    Environ Sci Technol; 2012 Dec; 46(24):13455-62. PubMed ID: 23157776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. AH peptide-mediated formation of charged planar lipid bilayers.
    Zan GH; Jackman JA; Cho NJ
    J Phys Chem B; 2014 Apr; 118(13):3616-21. PubMed ID: 24628664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Natural Organic Matter Concentration Impacts the Interaction of Functionalized Diamond Nanoparticles with Model and Actual Bacterial Membranes.
    Mensch AC; Hernandez RT; Kuether JE; Torelli MD; Feng ZV; Hamers RJ; Pedersen JA
    Environ Sci Technol; 2017 Oct; 51(19):11075-11084. PubMed ID: 28817268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell adhesion on supported lipid bilayers functionalized with RGD peptides monitored by using a quartz crystal microbalance with dissipation.
    Zhu X; Wang Z; Zhao A; Huang N; Chen H; Zhou S; Xie X
    Colloids Surf B Biointerfaces; 2014 Apr; 116():459-64. PubMed ID: 24552662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents.
    Stankus DP; Lohse SE; Hutchison JE; Nason JA
    Environ Sci Technol; 2011 Apr; 45(8):3238-44. PubMed ID: 21162562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deposition kinetics of quantum dots and polystyrene latex nanoparticles onto alumina: role of water chemistry and particle coating.
    Quevedo IR; Olsson AL; Tufenkji N
    Environ Sci Technol; 2013 Mar; 47(5):2212-20. PubMed ID: 23421856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidation of Polyunsaturated Lipid Membranes by Photocatalytic Titanium Dioxide Nanoparticles: Role of pH and Salinity.
    Parra-Ortiz E; Malekkhaiat Häffner S; Saerbeck T; Skoda MWA; Browning KL; Malmsten M
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32446-32460. PubMed ID: 32589394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.