BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28655112)

  • 41. Photoelectrocatalytic oxidation of Cu(II)-EDTA at the TiO2 electrode and simultaneous recovery of Cu(II) by electrodeposition.
    Zhao X; Guo L; Zhang B; Liu H; Qu J
    Environ Sci Technol; 2013 May; 47(9):4480-8. PubMed ID: 23521338
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characteristics of natural organic matter degradation in water by UV/H2O2 treatment.
    Wang GS; Liao CH; Chen HW; Yang HC
    Environ Technol; 2006 Mar; 27(3):277-87. PubMed ID: 16548208
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photodegradation of metolachlor applying UV and UV/H2O2.
    Wu C; Shemer H; Linden KG
    J Agric Food Chem; 2007 May; 55(10):4059-65. PubMed ID: 17447786
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Fenton-like degradation mechanism for 1,4-dioxane using zero-valent iron (Fe0) and UV light.
    Son HS; Im JK; Zoh KD
    Water Res; 2009 Mar; 43(5):1457-63. PubMed ID: 19131086
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Destruction of microcystins (cyanotoxins) by UV-254 nm-based direct photolysis and advanced oxidation processes (AOPs): influence of variable amino acids on the degradation kinetics and reaction mechanisms.
    He X; de la Cruz AA; Hiskia A; Kaloudis T; O'Shea K; Dionysiou DD
    Water Res; 2015 May; 74():227-38. PubMed ID: 25744186
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Copper(II) ethylenediaminetetraacetate complex does activate hydrogen peroxide in the presence of biological reductants.
    Ozawa T; Hanaki A; Onodera K
    Biochem Int; 1991 Jul; 24(4):661-7. PubMed ID: 1799367
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Steric and hydrogen-bonding effects on the stability of copper complexes with small molecules.
    Wada A; Honda Y; Yamaguchi S; Nagatomo S; Kitagawa T; Jitsukawa K; Masuda H
    Inorg Chem; 2004 Sep; 43(18):5725-35. PubMed ID: 15332825
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation.
    Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R
    Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative assessment on the contribution of direct photolysis and radical oxidation in photochemical degradation of 4-chlorophenol and oxytetracycline.
    Liu Y; He X; Fu Y; Dionysiou DD
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14307-15. PubMed ID: 27055892
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photodegradation of sulfasalazine and its human metabolites in water by UV and UV/peroxydisulfate processes.
    Ji Y; Yang Y; Zhou L; Wang L; Lu J; Ferronato C; Chovelon JM
    Water Res; 2018 Apr; 133():299-309. PubMed ID: 29407711
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of organic ligands in ferrous-induced photochemical degradation of 2,4-dichlorophenoxyacetic acid.
    Kwan CY; Chu W
    Chemosphere; 2007 Apr; 67(8):1601-11. PubMed ID: 17239922
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anatoxin-a degradation by Advanced Oxidation Processes: vacuum-UV at 172 nm, photolysis using medium pressure UV and UV/H(2)O(2).
    Afzal A; Oppenländer T; Bolton JR; El-Din MG
    Water Res; 2010 Jan; 44(1):278-86. PubMed ID: 19818467
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photodegradation of methyl red by advanced and homogeneous photo-Fenton's processes: a comparative study and kinetic approach.
    Devi LG; Raju KS; Kumar SG
    J Environ Monit; 2009 Jul; 11(7):1397-404. PubMed ID: 20449230
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oxidation of EDTA with H2O2 catalysed by metallophthalocyanines.
    Sillanpää M; Pirkanniemi K; Sorokin A
    Environ Technol; 2009 Dec; 30(14):1593-600. PubMed ID: 20184004
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparative evaluation of iodoacids removal by UV/persulfate and UV/H2O2 processes.
    Xiao Y; Zhang L; Zhang W; Lim KY; Webster RD; Lim TT
    Water Res; 2016 Oct; 102():629-639. PubMed ID: 27479295
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparative study of diethyl phthalate degradation by UV/H2O2 and UV/TiO2: kinetics, mechanism, and effects of operational parameters.
    Song C; Wang L; Ren J; Lv B; Sun Z; Yan J; Li X; Liu J
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2640-50. PubMed ID: 26432268
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Liquid chromatography tandem mass spectrometry analysis of photodegradation of a diazo compound: a mechanistic study.
    Meetani MA; Hisaindee SM; Abdullah F; Ashraf SS; Rauf MA
    Chemosphere; 2010 Jun; 80(4):422-7. PubMed ID: 20529695
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photocatalytic degradation of disperse blue 1 using UV/TiO2/H2O2 process.
    Saquib M; Abu Tariq M; Haque MM; Muneer M
    J Environ Manage; 2008 Jul; 88(2):300-6. PubMed ID: 17490807
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient mineralization of antibiotic ciprofloxacin in acid aqueous medium by a novel photoelectro-Fenton process using a microwave discharge electrodeless lamp irradiation.
    Wang A; Zhang Y; Zhong H; Chen Y; Tian X; Li D; Li J
    J Hazard Mater; 2018 Jan; 342():364-374. PubMed ID: 28850914
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photooxidative degradation of 4-nitrophenol (4-NP) in UV/H2O2 process: influence of operational parameters and reaction mechanism.
    Daneshvar N; Behnajady MA; Zorriyeh Asghar Y
    J Hazard Mater; 2007 Jan; 139(2):275-9. PubMed ID: 16860469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.