These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 28655193)

  • 1. The importance of fermentative conditions for the biotechnological production of lignin modifying enzymes from white-rot fungi.
    Martani F; Beltrametti F; Porro D; Branduardi P; Lotti M
    FEMS Microbiol Lett; 2017 Jul; 364(13):. PubMed ID: 28655193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into lignin degradation and its potential industrial applications.
    Abdel-Hamid AM; Solbiati JO; Cann IK
    Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating the role of media nitrogen in augmenting the production of lignin-depolymerizing enzymes by white-rot fungi.
    Pradeep Kumar V; Sridhar M; Ashis Kumar S; Bhatta R
    Microbiol Spectr; 2023 Sep; 11(5):e0141923. PubMed ID: 37655898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignin degrading system of white-rot fungi and its exploitation for dye decolorization.
    Shah V; Nerud F
    Can J Microbiol; 2002 Oct; 48(10):857-70. PubMed ID: 12489775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligninolytic fungal laccases and their biotechnological applications.
    Singh Arora D; Kumar Sharma R
    Appl Biochem Biotechnol; 2010 Mar; 160(6):1760-88. PubMed ID: 19513857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-cultured production of lignin-modifying enzymes with white-rot fungi.
    Qi-He C; Krügener S; Hirth T; Rupp S; Zibek S
    Appl Biochem Biotechnol; 2011 Sep; 165(2):700-18. PubMed ID: 21647688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of copper, nutrient nitrogen, and wood-supplement on the production of lignin-modifying enzymes by the white-rot fungus Phlebia radiata.
    Mäkelä MR; Lundell T; Hatakka A; Hildén K
    Fungal Biol; 2013 Jan; 117(1):62-70. PubMed ID: 23332834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial lignin peroxidases: Applications, production challenges and future perspectives.
    Biko ODV; Viljoen-Bloom M; van Zyl WH
    Enzyme Microb Technol; 2020 Nov; 141():109669. PubMed ID: 33051019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of manganese peroxidase and laccase production in the South American fungus Fomes sclerodermeus (Lév.) Cke.
    Papinutti VL; Forchiassin F
    J Ind Microbiol Biotechnol; 2003 Sep; 30(9):536-41. PubMed ID: 12905074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin.
    Martínez AT; Speranza M; Ruiz-Dueñas FJ; Ferreira P; Camarero S; Guillén F; Martínez MJ; Gutiérrez A; del Río JC
    Int Microbiol; 2005 Sep; 8(3):195-204. PubMed ID: 16200498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of chestnut shell and lignin-modifying enzymes production by the white-rot fungi Dichomitus squalens, Phlebia radiata.
    Dong YC; Dai YN; Xu TY; Cai J; Chen QH
    Bioprocess Biosyst Eng; 2014 May; 37(5):755-64. PubMed ID: 24013443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bleaching with lignin-oxidizing enzymes.
    Bajpai P; Anand A; Bajpai PK
    Biotechnol Annu Rev; 2006; 12():349-78. PubMed ID: 17045199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agro-industrial wastes revalorization as feedstock: production of lignin-modifying enzymes extracts by solid-state fermentation using white rot fungi.
    Contreras E; Flores R; Gutiérrez A; Cerro D; Sepúlveda LA
    Prep Biochem Biotechnol; 2023; 53(5):488-499. PubMed ID: 35980820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Enzymes of white rot fungi involved in lignin degradation].
    Papinutti VL; Forchiassin F
    Rev Argent Microbiol; 2000; 32(2):83-8. PubMed ID: 10885008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High redox potential laccases from the ligninolytic fungi Pycnoporus coccineus and Pycnoporus sanguineus suitable for white biotechnology: from gene cloning to enzyme characterization and applications.
    Uzan E; Nousiainen P; Balland V; Sipila J; Piumi F; Navarro D; Asther M; Record E; Lomascolo A
    J Appl Microbiol; 2010 Jun; 108(6):2199-213. PubMed ID: 19968731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and action mechanism of ligninolytic enzymes.
    Wong DW
    Appl Biochem Biotechnol; 2009 May; 157(2):174-209. PubMed ID: 18581264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Degradation of lignin-carbohydrate substrate by soil fungi--producers of laccase and cellobiose dehydrogenase].
    Vasil'chenko LG; Karapetian KN; Iachkova SN; ernova ES; Rabinovich ML
    Prikl Biokhim Mikrobiol; 2004; 40(1):51-6. PubMed ID: 15029698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Analysis of
    Shabaev AV; Moiseenko KV; Glazunova OA; Savinova OS; Fedorova TV
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of laccase and manganese peroxidase by Fomes sclerodermeus grown on wheat bran.
    Papinutti VL; Diorio LA; Forchiassin F
    J Ind Microbiol Biotechnol; 2003 Mar; 30(3):157-60. PubMed ID: 12715252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignin-degrading enzyme activities.
    Chen YR; Sarkanen S; Wang YY
    Methods Mol Biol; 2012; 908():251-68. PubMed ID: 22843404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.