BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

643 related articles for article (PubMed ID: 28655737)

  • 1. Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens.
    Hart T; Tong AHY; Chan K; Van Leeuwen J; Seetharaman A; Aregger M; Chandrashekhar M; Hustedt N; Seth S; Noonan A; Habsid A; Sizova O; Nedyalkova L; Climie R; Tworzyanski L; Lawson K; Sartori MA; Alibeh S; Tieu D; Masud S; Mero P; Weiss A; Brown KR; Usaj M; Billmann M; Rahman M; Constanzo M; Myers CL; Andrews BJ; Boone C; Durocher D; Moffat J
    G3 (Bethesda); 2017 Aug; 7(8):2719-2727. PubMed ID: 28655737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas9 screens reveal common essential miRNAs in human cancer cell lines.
    Merk DJ; Paul L; Tsiami F; Hohenthanner H; Kouchesfahani GM; Haeusser LA; Walter B; Brown A; Persky NS; Root DE; Tabatabai G
    Genome Med; 2024 Jun; 16(1):82. PubMed ID: 38886809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Drug Resistance Mechanisms Using Genome-Wide CRISPR-Cas9 Screens.
    MacLeod G; Rajakulendran N; Angers S
    Methods Mol Biol; 2022; 2535():141-156. PubMed ID: 35867229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pooled Lentiviral CRISPR-Cas9 Screens for Functional Genomics in Mammalian Cells.
    Aregger M; Chandrashekhar M; Tong AHY; Chan K; Moffat J
    Methods Mol Biol; 2019; 1869():169-188. PubMed ID: 30324523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient gene knockout and genetic interaction screening using the in4mer CRISPR/Cas12a multiplex knockout platform.
    Esmaeili Anvar N; Lin C; Ma X; Wilson LL; Steger R; Sangree AK; Colic M; Wang SH; Doench JG; Hart T
    Nat Commun; 2024 Apr; 15(1):3577. PubMed ID: 38678031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced gene templates for supervised analysis of scale-limited CRISPR-Cas9 fitness screens.
    Vinceti A; Perron U; Trastulla L; Iorio F
    Cell Rep; 2022 Jul; 40(4):111145. PubMed ID: 35905712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimised metrics for CRISPR-KO screens with second-generation gRNA libraries.
    Ong SH; Li Y; Koike-Yusa H; Yusa K
    Sci Rep; 2017 Aug; 7(1):7384. PubMed ID: 28785007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guide RNA Design for Genome-Wide CRISPR Screens in Yarrowia lipolytica.
    Ramesh A; Wheeldon I
    Methods Mol Biol; 2021; 2307():123-137. PubMed ID: 33847986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR Guide RNA Library Screens in Human Induced Pluripotent Stem Cells.
    Zhou Y; Fu Q; Shi H; Zhou G
    Methods Mol Biol; 2022; 2549():233-257. PubMed ID: 35347694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pooled CRISPR-Based Genetic Screens in Mammalian Cells.
    Chan K; Tong AHY; Brown KR; Mero P; Moffat J
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31545321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Screening Approach for the Dissection of Cellular Regulatory Networks of NF-κB Using Arrayed CRISPR gRNA Libraries.
    O'Shea P; Wildenhain J; Leveridge M; Revankar C; Yang JP; Bradley J; Firth M; Pilling J; Piper D; Chesnut J; Isherwood B
    SLAS Discov; 2020 Jul; 25(6):618-633. PubMed ID: 32476557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PICKLES v3: the updated database of pooled in vitro CRISPR knockout library essentiality screens.
    Novak LC; Chou J; Colic M; Bristow CA; Hart T
    Nucleic Acids Res; 2023 Jan; 51(D1):D1117-D1121. PubMed ID: 36350677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cas-Database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cas9.
    Park J; Kim JS; Bae S
    Bioinformatics; 2016 Jul; 32(13):2017-23. PubMed ID: 27153724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries.
    Vidigal JA; Ventura A
    Nat Commun; 2015 Aug; 6():8083. PubMed ID: 26278926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide CRISPR-Cas9 screening in mammalian cells.
    Yu JSL; Yusa K
    Methods; 2019 Jul; 164-165():29-35. PubMed ID: 31034882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PICKLES: the database of pooled in-vitro CRISPR knockout library essentiality screens.
    Lenoir WF; Lim TL; Hart T
    Nucleic Acids Res; 2018 Jan; 46(D1):D776-D780. PubMed ID: 29077937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SliceIt: A genome-wide resource and visualization tool to design CRISPR/Cas9 screens for editing protein-RNA interaction sites in the human genome.
    Vemuri S; Srivastava R; Mir Q; Hashemikhabir S; Dong XC; Janga SC
    Methods; 2020 Jun; 178():104-113. PubMed ID: 31494246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome Editing, Transcriptional Regulation, and Forward Genetic Screening Using CRISPR-Cas12a Systems in Yarrowia lipolytica.
    Ramesh A; Lee S; Wheeldon I
    Methods Mol Biol; 2024; 2760():169-198. PubMed ID: 38468089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatic and cell-based tools for pooled CRISPR knockout screening in mosquitos.
    Viswanatha R; Mameli E; Rodiger J; Merckaert P; Feitosa-Suntheimer F; Colpitts TM; Mohr SE; Hu Y; Perrimon N
    Nat Commun; 2021 Nov; 12(1):6825. PubMed ID: 34819517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BAGEL: a computational framework for identifying essential genes from pooled library screens.
    Hart T; Moffat J
    BMC Bioinformatics; 2016 Apr; 17():164. PubMed ID: 27083490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.