BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 28655769)

  • 1. Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex.
    Gao Y; Westfield G; Erickson JW; Cerione RA; Skiniotis G; Ramachandran S
    J Biol Chem; 2017 Aug; 292(34):14280-14289. PubMed ID: 28655769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shining a light on GPCR complexes.
    Dessauer CW
    J Biol Chem; 2017 Aug; 292(34):14290-14291. PubMed ID: 28842475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipids are needed for the proper formation, stability, and function of the photoactivated rhodopsin-transducin complex.
    Jastrzebska B; Goc A; Golczak M; Palczewski K
    Biochemistry; 2009 Jun; 48(23):5159-70. PubMed ID: 19413332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of the Rhodopsin-Transducin Complex: Insights into G-Protein Activation.
    Gao Y; Hu H; Ramachandran S; Erickson JW; Cerione RA; Skiniotis G
    Mol Cell; 2019 Aug; 75(4):781-790.e3. PubMed ID: 31300275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palmitoylation is a prerequisite for dimerization-dependent raftophilicity of rhodopsin.
    Seno K; Hayashi F
    J Biol Chem; 2017 Sep; 292(37):15321-15328. PubMed ID: 28747438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rhodopsin-transducin complex houses two distinct rhodopsin molecules.
    Jastrzebska B; Ringler P; Palczewski K; Engel A
    J Struct Biol; 2013 May; 182(2):164-72. PubMed ID: 23458690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallization scale preparation of a stable GPCR signaling complex between constitutively active rhodopsin and G-protein.
    Maeda S; Sun D; Singhal A; Foggetta M; Schmid G; Standfuss J; Hennig M; Dawson RJ; Veprintsev DB; Schertler GF
    PLoS One; 2014; 9(6):e98714. PubMed ID: 24979345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and functional characterization of a stable complex between photoactivated rhodopsin and the G protein, transducin.
    Jastrzebska B; Golczak M; Fotiadis D; Engel A; Palczewski K
    FASEB J; 2009 Feb; 23(2):371-81. PubMed ID: 18827025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different properties of the native and reconstituted heterotrimeric G protein transducin.
    Goc A; Angel TE; Jastrzebska B; Wang B; Wintrode PL; Palczewski K
    Biochemistry; 2008 Nov; 47(47):12409-19. PubMed ID: 18975915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A switch 3 point mutation in the alpha subunit of transducin yields a unique dominant-negative inhibitor.
    Pereira R; Cerione RA
    J Biol Chem; 2005 Oct; 280(42):35696-703. PubMed ID: 16103122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dominant-negative Galpha mutant that traps a stable rhodopsin-Galpha-GTP-betagamma complex.
    Ramachandran S; Cerione RA
    J Biol Chem; 2011 Apr; 286(14):12702-11. PubMed ID: 21285355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodopsin controls a conformational switch on the transducin gamma subunit.
    Kisselev OG; Downs MA
    Structure; 2003 Apr; 11(4):367-73. PubMed ID: 12679015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The phosphorylation state of phosducin determines its ability to block transducin subunit interactions and inhibit transducin binding to activated rhodopsin.
    Yoshida T; Willardson BM; Wilkins JF; Jensen GJ; Thornton BD; Bitensky MW
    J Biol Chem; 1994 Sep; 269(39):24050-7. PubMed ID: 7929057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gain-of-function screen of α-transducin identifies an essential phenylalanine residue necessary for full effector activation.
    Milano SK; Wang C; Erickson JW; Cerione RA; Ramachandran S
    J Biol Chem; 2018 Nov; 293(46):17941-17952. PubMed ID: 30266806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of the complex formation of GDP-bound transducin with the rhodopsin intermediate having a visible absorption maximum in rod outer segment membranes.
    Morizumi T; Imai H; Shichida Y
    Biochemistry; 2005 Jul; 44(29):9936-43. PubMed ID: 16026166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative binding of the retinal rod G-protein, transducin, to light-activated rhodopsin.
    Willardson BM; Pou B; Yoshida T; Bitensky MW
    J Biol Chem; 1993 Mar; 268(9):6371-82. PubMed ID: 8454608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of transducin with light-activated rhodopsin protects It from proteolytic digestion by trypsin.
    Mazzoni MR; Hamm HE
    J Biol Chem; 1996 Nov; 271(47):30034-40. PubMed ID: 8939950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetry of the rhodopsin dimer in complex with transducin.
    Jastrzebska B; Orban T; Golczak M; Engel A; Palczewski K
    FASEB J; 2013 Apr; 27(4):1572-84. PubMed ID: 23303210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodopsin-interacting surface of the transducin gamma subunit.
    Kisselev OG; Downs MA
    Biochemistry; 2006 Aug; 45(31):9386-92. PubMed ID: 16878973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perturbing the linker regions of the alpha-subunit of transducin: a new class of constitutively active GTP-binding proteins.
    Majumdar S; Ramachandran S; Cerione RA
    J Biol Chem; 2004 Sep; 279(38):40137-45. PubMed ID: 15271992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.