These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28655848)

  • 1. Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces.
    Peaudecerf FJ; Landel JR; Goldstein RE; Luzzatto-Fegiz P
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7254-7259. PubMed ID: 28655848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single parameter can predict surfactant impairment of superhydrophobic drag reduction.
    Temprano-Coleto F; Smith SM; Peaudecerf FJ; Landel JR; Gibou F; Luzzatto-Fegiz P
    Proc Natl Acad Sci U S A; 2023 Jan; 120(3):e2211092120. PubMed ID: 36634141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theory for the slip and drag of superhydrophobic surfaces with surfactant.
    Landel JR; Peaudecerf FJ; Temprano-Coleto F; Gibou F; Goldstein RE; Luzzatto-Fegiz P
    J Fluid Mech; 2020 Jan; 883():. PubMed ID: 31806916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plastron Regeneration on Submerged Superhydrophobic Surfaces Using In Situ Gas Generation by Chemical Reaction.
    Panchanathan D; Rajappan A; Varanasi KK; McKinley GH
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33684-33692. PubMed ID: 30184437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface.
    Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH
    Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired surfaces for turbulent drag reduction.
    Golovin KB; Gose JW; Perlin M; Ceccio SL; Tuteja A
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical investigation of the effect of air layer on drag reduction in channel flow over a superhydrophobic surface.
    Nguyen HT; Lee SW; Ryu J; Kim M; Yoon J; Chang K
    Sci Rep; 2024 May; 14(1):12053. PubMed ID: 38802500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow.
    Zhang J; Yao Z; Hao P
    Phys Rev E; 2016 Nov; 94(5-1):053117. PubMed ID: 27967180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal and External Flow over Laser-Textured Superhydrophobic Polytetrafluoroethylene (PTFE).
    Ahmmed KM; Patience C; Kietzig AM
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27411-27419. PubMed ID: 27649381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Armored Superhydrophobic Surfaces with Excellent Drag Reduction in Complex Environmental Conditions.
    Wang Z; Liu X; Guo Y; Tong B; Zhang G; Liu K; Jiao Y
    Langmuir; 2024 Feb; ():. PubMed ID: 38335533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible conformable hydrophobized surfaces for turbulent flow drag reduction.
    Brennan JC; Geraldi NR; Morris RH; Fairhurst DJ; McHale G; Newton MI
    Sci Rep; 2015 May; 5():10267. PubMed ID: 25975704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete Electrolytic Plastron Recovery in a Low Drag Superhydrophobic Surface.
    Lloyd BP; Bartlett PN; Wood RJK
    ACS Omega; 2021 Feb; 6(5):3483-3489. PubMed ID: 33644523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Marangoni flows triggered by cationic-anionic surfactant complexation.
    Nikkhah A; Shin S
    J Colloid Interface Sci; 2024 Dec; 676():168-176. PubMed ID: 39024817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Driven Gas Spreading on Mesh Surfaces for Regeneration of Underwater Superhydrophobicity.
    Wang J; Liu Y
    ACS Appl Mater Interfaces; 2024 Jul; 16(30):40231-40242. PubMed ID: 39034615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyramid-Shaped Superhydrophobic Surfaces for Underwater Drag Reduction.
    Zhang L; Wan X; Zhou X; Cao Y; Duan H; Yan J; Li H; Lv P
    ACS Appl Mater Interfaces; 2024 Aug; 16(33):44319-44327. PubMed ID: 39110849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable-streamlined cavities following the impact of non-superhydrophobic spheres on water.
    Vakarelski IU; Jetly A; Thoroddsen ST
    Soft Matter; 2019 Aug; 15(31):6278-6287. PubMed ID: 31322158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competition between thermal and surfactant-induced Marangoni flow in evaporating sessile droplets.
    van Gaalen RT; Wijshoff HMA; Kuerten JGM; Diddens C
    J Colloid Interface Sci; 2022 Sep; 622():892-903. PubMed ID: 35561609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient Marangoni transport of colloidal particles at the liquid/liquid interface caused by surfactant convective-diffusion under radial flow.
    Dunér G; Garoff S; Przybycien TM; Tilton RD
    J Colloid Interface Sci; 2016 Jan; 462():75-87. PubMed ID: 26433480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Soluble Surfactants and Deformation on the Dynamics of Centered Bubbles in Cylindrical Microchannels.
    Atasi O; Haut B; Pedrono A; Scheid B; Legendre D
    Langmuir; 2018 Aug; 34(34):10048-10062. PubMed ID: 30040422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of water surface tension significantly impacts gecko adhesion underwater.
    Stark AY; McClung B; Niewiarowski PH; Dhinojwala A
    Integr Comp Biol; 2014 Dec; 54(6):1026-33. PubMed ID: 24944119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.