These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28655893)

  • 1. Anderson localization in synthetic photonic lattices.
    Vatnik ID; Tikan A; Onishchukov G; Churkin DV; Sukhorukov AA
    Sci Rep; 2017 Jun; 7(1):4301. PubMed ID: 28655893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anderson localization in synthetic photonic lattice with random coupling.
    Pankov AV; Vatnik ID; Churkin DV; Derevyanko SA
    Opt Express; 2019 Feb; 27(4):4424-4434. PubMed ID: 30876061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization and delocalization of light in photonic moiré lattices.
    Wang P; Zheng Y; Chen X; Huang C; Kartashov YV; Torner L; Konotop VV; Ye F
    Nature; 2020 Jan; 577(7788):42-46. PubMed ID: 31853062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport and Anderson localization in disordered two-dimensional photonic lattices.
    Schwartz T; Bartal G; Fishman S; Segev M
    Nature; 2007 Mar; 446(7131):52-5. PubMed ID: 17330037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization-to-delocalization transition of light in frequency-tuned photonic moiré lattices.
    Zeng J; Hu Y; Zhang X; Fu S; Yin H; Li Z; Chen Z
    Opt Express; 2021 Aug; 29(16):25388-25398. PubMed ID: 34614871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disorder-aided pulse stabilization in dissipative synthetic photonic lattices.
    Derevyanko S
    Sci Rep; 2019 Sep; 9(1):12883. PubMed ID: 31501468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Hermitian dynamical topological winding in photonic mesh lattices.
    Longhi S
    Opt Lett; 2024 Jul; 49(13):3672-3675. PubMed ID: 38950237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Einstein-Podolsky-Rosen spatial entanglement in ordered and anderson photonic lattices.
    Di Giuseppe G; Martin L; Perez-Leija A; Keil R; Dreisow F; Nolte S; Szameit A; Abouraddy AF; Christodoulides DN; Saleh BE
    Phys Rev Lett; 2013 Apr; 110(15):150503. PubMed ID: 25167236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parity-Induced Thermalization Gap in Disordered Ring Lattices.
    Wang Y; Gao J; Pang XL; Jiao ZQ; Tang H; Chen Y; Qiao LF; Gao ZW; Dou JP; Yang AL; Jin XM
    Phys Rev Lett; 2019 Jan; 122(1):013903. PubMed ID: 31012669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observing two-particle Anderson localization in linear disordered photonic lattices.
    Xing Y; Zhao X; Lü Z; Liu S; Zhang S; Wang HF
    Opt Express; 2021 Nov; 29(24):40428-40446. PubMed ID: 34809384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multidimensional synthetic chiral-tube lattices via nonlinear frequency conversion.
    Wang K; Bell BA; Solntsev AS; Neshev DN; Eggleton BJ; Sukhorukov AA
    Light Sci Appl; 2020; 9():132. PubMed ID: 32704365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amorphous photonic lattices: band gaps, effective mass, and suppressed transport.
    Rechtsman M; Szameit A; Dreisow F; Heinrich M; Keil R; Nolte S; Segev M
    Phys Rev Lett; 2011 May; 106(19):193904. PubMed ID: 21668160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices.
    Lahini Y; Avidan A; Pozzi F; Sorel M; Morandotti R; Christodoulides DN; Silberberg Y
    Phys Rev Lett; 2008 Jan; 100(1):013906. PubMed ID: 18232768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realization of all-band-flat photonic lattices.
    Yang J; Li Y; Yang Y; Xie X; Zhang Z; Yuan J; Cai H; Wang DW; Gao F
    Nat Commun; 2024 Feb; 15(1):1484. PubMed ID: 38374147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic band gap via quantum coherence in vortex lattices of Bose-Einstein condensates.
    Müstecaplioğlu OE; Oktel MO
    Phys Rev Lett; 2005 Jun; 94(22):220404. PubMed ID: 16090371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study on Nonlinear Spectral Properties of Photonic Crystal Fiber in Theory and Experiment].
    Zhao XT; Wang ST; Liu XX; Han Y; Zhao YY; Li SG; Hou LT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1650-5. PubMed ID: 30052365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust light transport in non-Hermitian photonic lattices.
    Longhi S; Gatti D; Della Valle G
    Sci Rep; 2015 Aug; 5():13376. PubMed ID: 26314932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing multi-mobility edges in quasiperiodic mosaic lattices.
    Gao J; Khaymovich IM; Wang XW; Xu ZS; Iovan A; Krishna G; Jieensi J; Cataldo A; Balatsky AV; Zwiller V; Elshaari AW
    Sci Bull (Beijing); 2024 Sep; ():. PubMed ID: 39414538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrete temporal Talbot effect in synthetic mesh lattices.
    Wang S; Qin C; Wang B; Lu P
    Opt Express; 2018 Jul; 26(15):19235-19246. PubMed ID: 30114182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation and optical tailoring of photonic lattice filaments.
    Bellec M; Panagiotopoulos P; Papazoglou DG; Efremidis NK; Couairon A; Tzortzakis S
    Phys Rev Lett; 2012 Sep; 109(11):113905. PubMed ID: 23005632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.