These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28656191)

  • 1. Thermoplastic elastomer with advanced hydrophilization and bonding performances for rapid (30 s) and easy molding of microfluidic devices.
    Lachaux J; Alcaine C; Gómez-Escoda B; Perrault CM; Duplan DO; Wu PJ; Ochoa I; Fernandez L; Mercier O; Coudreuse D; Roy E
    Lab Chip; 2017 Jul; 17(15):2581-2594. PubMed ID: 28656191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoplastic elastomers for microfluidics: towards a high-throughput fabrication method of multilayered microfluidic devices.
    Roy E; Galas JC; Veres T
    Lab Chip; 2011 Sep; 11(18):3193-6. PubMed ID: 21796278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile Patterning of Thermoplastic Elastomers and Robust Bonding to Glass and Thermoplastics for Microfluidic Cell Culture and Organ-on-Chip.
    Schneider S; Brás EJS; Schneider O; Schlünder K; Loskill P
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34070209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Fabrication of Membrane-Integrated Thermoplastic Elastomer Microfluidic Devices.
    McMillan AH; Thomée EK; Dellaquila A; Nassman H; Segura T; Lesher-Pérez SC
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32731570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic device fabrication mediated by surface chemical bonding.
    Sivakumar R; Lee NY
    Analyst; 2020 Jun; 145(12):4096-4110. PubMed ID: 32451519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models.
    van Midwoud PM; Janse A; Merema MT; Groothuis GM; Verpoorte E
    Anal Chem; 2012 May; 84(9):3938-44. PubMed ID: 22444457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid, cost-efficient fabrication of microfluidic reactors in thermoplastic polymers by combining photolithography and hot embossing.
    Greener J; Li W; Ren J; Voicu D; Pakharenko V; Tang T; Kumacheva E
    Lab Chip; 2010 Feb; 10(4):522-4. PubMed ID: 20126695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoplastic microfluidic platform for single-molecule detection, cell culture, and actuation.
    Melin J; Johansson H; Söderberg O; Nikolajeff F; Landegren U; Nilsson M; Jarvius J
    Anal Chem; 2005 Nov; 77(22):7122-30. PubMed ID: 16285657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of polyurethane as an elastomer in thermoplastic microfluidic devices and the study of its creep properties.
    Gu P; Nishida T; Fan ZH
    Electrophoresis; 2014 Feb; 35(2-3):289-97. PubMed ID: 23868507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique.
    Uba FI; Hu B; Weerakoon-Ratnayake K; Oliver-Calixte N; Soper SA
    Lab Chip; 2015 Feb; 15(4):1038-49. PubMed ID: 25511610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production.
    Tsao CW
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoplastic elastomer gels: an advanced substrate for microfluidic chemical analysis systems.
    Sudarsan AP; Wang J; Ugaz VM
    Anal Chem; 2005 Aug; 77(16):5167-73. PubMed ID: 16097755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New family of fluorinated polymer chips for droplet and organic solvent microfluidics.
    Begolo S; Colas G; Viovy JL; Malaquin L
    Lab Chip; 2011 Feb; 11(3):508-12. PubMed ID: 21113543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits.
    Chantiwas R; Hupert ML; Pullagurla SR; Balamurugan S; Tamarit-López J; Park S; Datta P; Goettert J; Cho YK; Soper SA
    Lab Chip; 2010 Dec; 10(23):3255-64. PubMed ID: 20938506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates.
    Paul D; Pallandre A; Miserere S; Weber J; Viovy JL
    Electrophoresis; 2007 Apr; 28(7):1115-22. PubMed ID: 17330225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gecko gaskets for self-sealing and high-strength reversible bonding of microfluidics.
    Wasay A; Sameoto D
    Lab Chip; 2015 Jul; 15(13):2749-53. PubMed ID: 26016928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From cellular lysis to microarray detection, an integrated thermoplastic elastomer (TPE) point of care Lab on a Disc.
    Roy E; Stewart G; Mounier M; Malic L; Peytavi R; Clime L; Madou M; Bossinot M; Bergeron MG; Veres T
    Lab Chip; 2015 Jan; 15(2):406-16. PubMed ID: 25385141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite Elastomer-Enabled Rapid Photofabrication of Microfluidic Devices.
    Zhu F; He Y; Lu Z; Fan H; Zhang T
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37589-37597. PubMed ID: 34327981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid fabrication of nickel molds for prototyping embossed plastic microfluidic devices.
    Novak R; Ranu N; Mathies RA
    Lab Chip; 2013 Apr; 13(8):1468-71. PubMed ID: 23450308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technique for microfabrication of polymeric-based microchips from an SU-8 master with temperature-assisted vaporized organic solvent bonding.
    Koesdjojo MT; Koch CR; Remcho VT
    Anal Chem; 2009 Feb; 81(4):1652-9. PubMed ID: 19166284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.