BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28656486)

  • 1. Abamectin treatment affects glutamate decarboxylase expression and induces higher GABA levels in the citrus red mite, Panonychus citri.
    Dou W; Xia WK; Niu JZ; Wang JJ
    Exp Appl Acarol; 2017 Jul; 72(3):229-244. PubMed ID: 28656486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-resistance, inheritance and biochemical mechanism of abamectin resistance in a field-derived strain of the citrus red mite, Panonychus citri (Acari: Tetranychidae).
    Liu XY; Li K; Pan D; Dou W; Yuan GR; Wang JJ
    Pest Manag Sci; 2024 Mar; 80(3):1258-1265. PubMed ID: 37889506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of responsive proteins in Panonychus citri exposed to abamectin by a proteomic approach.
    Shen XM; Zhong R; Xia WK; Wei D; Ding TB; Liao CY; Niu JZ; Dou W; Wang JJ
    J Proteomics; 2017 Mar; 158():9-19. PubMed ID: 28219754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and functional analysis of a novel glutathione S-transferase gene potentially associated with the abamectin resistance in Panonychus citri (McGregor).
    Liao CY; Xia WK; Feng YC; Li G; Liu H; Dou W; Wang JJ
    Pestic Biochem Physiol; 2016 Sep; 132():72-80. PubMed ID: 27521916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From the Cover: Functional Analysis Reveals Glutamate and Gamma-Aminobutyric Acid-Gated Chloride Channels as Targets of Avermectins in the Carmine Spider Mite.
    Xu Z; Wu Q; Xu Q; He L
    Toxicol Sci; 2017 Jan; 155(1):258-269. PubMed ID: 27742867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High γ-aminobutyric acid content, a novel component associated with resistance to abamectin in Tetranychus cinnabarinus (Boisduval).
    Xin-jun Z; Wen-cai L; Ya-ning F; Lin H
    J Insect Physiol; 2010 Dec; 56(12):1895-900. PubMed ID: 20713058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A UDP-glycosyltransferase gene PcUGT202A9 was associated with abamectin resistance in Panonychus citri (McGregor).
    Shao B; Yu S; Wang S; Li S; Ding L; Li M; Cheng L; Pan Q; Cong L; Ran C
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132228. PubMed ID: 38734355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lethal and sublethal effects of emamectin benzoate on life-table and physiological parameters of citrus red mite, Panonychus citri.
    Khan MM; Ali MW; Hafeez M; Fan ZY; Ali S; Qiu BL
    Exp Appl Acarol; 2021 Dec; 85(2-4):173-190. PubMed ID: 34677719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction between abamectin and RDL in the carmine spider mite: a target site and resistant mechanism study.
    Xu Z; Hu Y; Hu J; Qi C; Zhang M; Xu Q; He L
    Pestic Biochem Physiol; 2020 Mar; 164():191-195. PubMed ID: 32284126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spirodiclofen and spirotetramat bioassays for monitoring resistance in citrus red mite, Panonychus citri (Acari: Tetranychidae).
    Ouyang Y; Montez GH; Liu L; Grafton-Cardwell EE
    Pest Manag Sci; 2012 May; 68(5):781-7. PubMed ID: 22102515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring the Resistance of the Citrus Red Mite (Acari: Tetranychidae) to Four Acaricides in Different Citrus Orchards in China.
    Pan D; Dou W; Yuan GR; Zhou QH; Wang JJ
    J Econ Entomol; 2020 Apr; 113(2):918-923. PubMed ID: 31819971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spraying pyrethroid and neonicotinoid insecticides can induce outbreaks of Panonychus citri (Trombidiformes: Tetranychidae) in citrus groves.
    Zanardi OZ; Bordini GP; Franco AA; de Morais MR; Yamamoto PT
    Exp Appl Acarol; 2018 Nov; 76(3):339-354. PubMed ID: 30341475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of three isoforms of SOD gene by environmental stresses in citrus red mite, Panonychus citri.
    Feng YC; Liao CY; Xia WK; Jiang XZ; Shang F; Yuan GR; Wang JJ
    Exp Appl Acarol; 2015 Sep; 67(1):49-63. PubMed ID: 26063404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analysis of the small RNA transcriptome of four developmental stages of the citrus red mite (Panonychus citri).
    Liu B; Dou W; Ding TB; Zhong R; Liao CY; Xia WK; Wang JJ
    Insect Mol Biol; 2014 Apr; 23(2):216-29. PubMed ID: 24330037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterisation of a sodium channel gene and identification of a Phe1538 to Ile mutation in citrus red mite, Panonychus citri.
    Ding TB; Zhong R; Jiang XZ; Liao CY; Xia WK; Liu B; Dou W; Wang JJ
    Pest Manag Sci; 2015 Feb; 71(2):266-77. PubMed ID: 24753229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and genetic analysis of resistance to METI-I acaricides in Iranian populations of the citrus red mite Panonychus citri.
    Alavijeh ES; Khajehali J; Snoeck S; Panteleri R; Ghadamyari M; Jonckheere W; Bajda S; Saalwaechter C; Geibel S; Douris V; Vontas J; Van Leeuwen T; Dermauw W
    Pestic Biochem Physiol; 2020 Mar; 164():73-84. PubMed ID: 32284140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A point mutation in a glutamate-gated chloride channel confers abamectin resistance in the two-spotted spider mite, Tetranychus urticae Koch.
    Kwon DH; Yoon KS; Clark JM; Lee SH
    Insect Mol Biol; 2010 Aug; 19(4):583-91. PubMed ID: 20522121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulation of glutamic acid decarboxylases in GABA neurotransmission in the brain.
    Lee SE; Lee Y; Lee GH
    Arch Pharm Res; 2019 Dec; 42(12):1031-1039. PubMed ID: 31786745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure to diflubenzuron results in an up-regulation of a chitin synthase 1 gene in citrus red mite, Panonychus citri (Acari: Tetranychidae).
    Xia WK; Ding TB; Niu JZ; Liao CY; Zhong R; Yang WJ; Liu B; Dou W; Wang JJ
    Int J Mol Sci; 2014 Feb; 15(3):3711-28. PubMed ID: 24590130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GABAergic dysfunction in mGlu7 receptor-deficient mice as reflected by decreased levels of glutamic acid decarboxylase 65 and 67kDa and increased reelin proteins in the hippocampus.
    Wierońska JM; Brański P; Siwek A; Dybala M; Nowak G; Pilc A
    Brain Res; 2010 Jun; 1334():12-24. PubMed ID: 20353761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.