BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28656726)

  • 1. Correlation distance dependence of the resonance frequency of intermolecular zero quantum coherences and its implication for MR thermometry.
    Zhang L; McCallister A; Koshlap KM; Branca RT
    Magn Reson Med; 2018 Mar; 79(3):1429-1438. PubMed ID: 28656726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate MR thermometry by hyperpolarized
    Zhang L; Burant A; McCallister A; Zhao V; Koshlap KM; Degan S; Antonacci M; Branca RT
    Magn Reson Med; 2017 Sep; 78(3):1070-1079. PubMed ID: 27759913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermolecular zero quantum coherences enable accurate temperature imaging in red bone marrow.
    Davis RM; Warren WS
    Magn Reson Med; 2015 Jul; 74(1):63-70. PubMed ID: 25043195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Referenced MR thermometry using three-echo phase-based fat water separation method.
    Hofstetter LW; Yeo DTB; Dixon WT; Marinelli L; Foo TK
    Magn Reson Imaging; 2018 Jun; 49():86-93. PubMed ID: 29409819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-echo MR thermometry using iterative separation of baseline water and fat images.
    Poorman ME; Braškutė I; Bartels LW; Grissom WA
    Magn Reson Med; 2019 Apr; 81(4):2385-2398. PubMed ID: 30394582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-spin echo spatial encoding provides three-fold improvement of temperature precision during intermolecular zero quantum thermometry.
    Davis RM; Zhou Z; Chung H; Warren WS
    Magn Reson Med; 2016 May; 75(5):1958-66. PubMed ID: 26077531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MR temperature imaging using PRF phase difference and a geometric model-based fat suppression method.
    Liu S; Zhou Y
    Technol Health Care; 2015; 23 Suppl 2():S587-92. PubMed ID: 26410527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance microscopic imaging based on high-order intermolecular multiple-quantum coherences.
    Cho JH; Ahn S; Lee C; Hong KS; Chung KC; Chang SK; Cheong C; Warren WS
    Magn Reson Imaging; 2007 Jun; 25(5):626-33. PubMed ID: 17540273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MR imaging contrast enhancement based on intermolecular zero quantum coherences.
    Warren WS; Ahn S; Mescher M; Garwood M; Ugurbil K; Richter W; Rizi RR; Hopkins J; Leigh JS
    Science; 1998 Jul; 281(5374):247-51. PubMed ID: 9657717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiecho pseudo-golden angle stack of stars thermometry with high spatial and temporal resolution using k-space weighted image contrast.
    Svedin BT; Payne A; Bolster BD; Parker DL
    Magn Reson Med; 2018 Mar; 79(3):1407-1419. PubMed ID: 28643383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical studies of intermolecular multiple quantum coherences: high-resolution NMR in inhomogeneous fields and contrast enhancement in MRI.
    Garrett-Roe S; Warren WS
    J Magn Reson; 2000 Sep; 146(1):1-13. PubMed ID: 10968952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spiral-based volumetric acquisition for MR temperature imaging.
    Fielden SW; Feng X; Zhao L; Miller GW; Geeslin M; Dallapiazza RF; Elias WJ; Wintermark M; Butts Pauly K; Meyer CH
    Magn Reson Med; 2018 Jun; 79(6):3122-3127. PubMed ID: 29115692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance thermometry and its biological applications - Physical principles and practical considerations.
    Odéen H; Parker DL
    Prog Nucl Magn Reson Spectrosc; 2019 Feb; 110():34-61. PubMed ID: 30803693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of microscopic susceptibility gradients on chemical-shift-based fat fraction quantification in supraclavicular fat.
    McCallister D; Zhang L; Burant A; Katz L; Branca RT
    J Magn Reson Imaging; 2019 Jan; 49(1):141-151. PubMed ID: 30284347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiparametric fat-water separation method for fast chemical-shift imaging guidance of thermal therapies.
    Lin JS; Hwang KP; Jackson EF; Hazle JD; Stafford RJ; Taylor BA
    Med Phys; 2013 Oct; 40(10):103302. PubMed ID: 24089932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-echo Z-shimmed proton resonance frequency-shift magnetic resonance thermometry near metallic ablation probes: Technique and temperature precision.
    Zhang Y; Poorman ME; Grissom WA
    Magn Reson Med; 2017 Dec; 78(6):2299-2306. PubMed ID: 28185304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of water and fat heterogeneity on fat-referenced MR thermometry.
    Baron P; Deckers R; Bouwman JG; Bakker CJ; de Greef M; Viergever MA; Moonen CT; Bartels LW
    Magn Reson Med; 2016 Mar; 75(3):1187-97. PubMed ID: 25940426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous T1 measurements and proton resonance frequency shift based thermometry using variable flip angles.
    Hey S; de Smet M; Stehning C; Grüll H; Keupp J; Moonen CT; Ries M
    Magn Reson Med; 2012 Feb; 67(2):457-63. PubMed ID: 22052363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution intermolecular zero-quantum coherence spectroscopy under inhomogeneous fields with effective solvent suppression.
    Chen X; Lin M; Chen Z; Cai S; Zhong J
    Phys Chem Chem Phys; 2007 Dec; 9(47):6231-40. PubMed ID: 18046472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-step iterative temperature estimation method for accurate and precise fat-referenced PRFS temperature imaging.
    Cheng C; Zou C; Wan Q; Qiao Y; Pan M; Tie C; Liang D; Zheng H; Liu X
    Magn Reson Med; 2019 Feb; 81(2):1322-1334. PubMed ID: 30230595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.