BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 28656755)

  • 1. Microfluidic Separation of Lymphoblasts for the Isolation of Acute Lymphoblastic Leukemia Using the Human Transferrin Receptor as a Capture Target.
    Li W; Zhang Y; Reynolds CP; Pappas D
    Anal Chem; 2017 Jul; 89(14):7340-7347. PubMed ID: 28656755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of protein expression on cancer cell capture using the Human Transferrin Receptor (CD71) as an affinity ligand.
    Lyons VJ; Helms A; Pappas D
    Anal Chim Acta; 2019 Oct; 1076():154-161. PubMed ID: 31203960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle modification of microfluidic cell separation for cancer cell detection and isolation.
    Zhou Y; Dong Z; Andarge H; Li W; Pappas D
    Analyst; 2019 Dec; 145(1):257-267. PubMed ID: 31746823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of transferrin-receptor and epithelial cellular adhesion molecule targeting for microfluidic separation of cancer cells.
    Li X; Zhou Y; Wickramaratne B; Yang Y; Pappas D
    Biomed Microdevices; 2021 Apr; 23(2):28. PubMed ID: 33909118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Affinity separation and subsequent terminal differentiation of acute myeloid leukemia cells using the human transferrin receptor (CD71) as a capture target.
    Lyons VJ; Pappas D
    Analyst; 2019 May; 144(10):3369-3380. PubMed ID: 30984961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prognostic Value of Transferrin Receptor-1 (CD71) Expression in Acute Lymphoblastic Leukemia.
    Hagag AA; Badraia IM; Abdelmageed MM; Hablas NM; Hazzaa SME; Nosair NA
    Endocr Metab Immune Disord Drug Targets; 2018; 18(6):610-617. PubMed ID: 29875008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Migration of acute lymphoblastic leukemia cells into human bone marrow stroma.
    Makrynikola V; Bianchi A; Bradstock K; Gottlieb D; Hewson J
    Leukemia; 1994 Oct; 8(10):1734-43. PubMed ID: 7523799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The use of a panel of monoclonal antibodies for immunologic prognosis of recurrence of acute lymphoblastic leukemia].
    Novikova MS; Miterev GIu; Morozova NG; Shakhbazian GP; Bulycheva TI
    Gematol Transfuziol; 1990 Apr; 35(4):23-6. PubMed ID: 2373344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel monoclonal antibody, KOR-SA3544 which reacts to Philadelphia chromosome-positive acute lymphoblastic leukemia cells with high sensitivity.
    Mori T; Sugita K; Suzuki T; Okazaki T; Manabe A; Hosoya R; Mizutani S; Kinoshita A; Nakazawa S
    Leukemia; 1995 Jul; 9(7):1233-9. PubMed ID: 7543176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo anti-leukemic efficacy of anti-CD7-pokeweed antiviral protein immunotoxin against human T-lineage acute lymphoblastic leukemia/lymphoma in mice with severe combined immunodeficiency.
    Gunther R; Chelstrom LM; Finnegan D; Tuel-Ahlgren L; Irvin JD; Myers DE; Uckun FM
    Leukemia; 1993 Feb; 7(2):298-309. PubMed ID: 7678882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lymphoblast morphology in predicting leukemic meningeal relapse with low chamber count and lymphoblasts.
    Goldsby RE; Morgan JG; Egger MJ; Feusner J
    Med Pediatr Oncol; 1997 Aug; 29(2):98-102. PubMed ID: 9180910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD99 (p30/32MIC2) immunoreactivity in the diagnosis of leukemia cutis.
    Dorfman DM; Kraus M; Perez-Atayde AR; Barnhill RL; Pinkus GS; Granter SR
    Mod Pathol; 1997 Apr; 10(4):283-8. PubMed ID: 9110288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-GD3 monoclonal antibody analysis of childhood T-cell acute lymphoblastic leukemia: detection of a target antigen for antibody-mediated cytolysis.
    Reaman GH; Taylor BJ; Merritt WD
    Cancer Res; 1990 Jan; 50(1):202-5. PubMed ID: 2403416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow cytometry in the differential diagnosis of lymphocyte-rich thymoma from precursor T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma.
    Li S; Juco J; Mann KP; Holden JT
    Am J Clin Pathol; 2004 Feb; 121(2):268-74. PubMed ID: 14983942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Relationship between the bone marrow cell proliferation and the prognosis in childhood acute lymphoblastic leukemia].
    Zheng H; Zhao X; Geng L
    Zhonghua Xue Ye Xue Za Zhi; 1999 Jan; 20(1):7-9. PubMed ID: 11498846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of 9-O-acetylated sialoglycoproteins from leukemic cells and their potential as immunological tool for monitoring childhood acute lymphoblastic leukemia.
    Pal S; Ghosh S; Mandal C; Kohla G; Brossmer R; Isecke R; Merling A; Schauer R; Schwartz-Albiez R; Bhattacharya DK; Mandal C
    Glycobiology; 2004 Oct; 14(10):859-70. PubMed ID: 15190007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shedding of CD9 antigen in acute lymphoblastic leukemia.
    Komada Y; Sakurai M
    Leuk Lymphoma; 1994 Feb; 12(5-6):365-72. PubMed ID: 8180600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunophenotypic characteristics of T-acute lymphoblastic leukemia cells in relation to DPP IV enzyme expression.
    Klobusická M; Babusíková O
    Neoplasma; 1998; 45(4):237-42. PubMed ID: 9890667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An epitope on the transferrin receptor preferentially exposed during tumor progression in human lymphoma is close to the ligand binding site.
    Takahashi S; Esserman L; Levy R
    Blood; 1991 Feb; 77(4):826-32. PubMed ID: 1704266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Cell origin of 18 patients with non-T, non-B acute lymphoblastic leukemia].
    Tang MH
    Zhonghua Zhong Liu Za Zhi; 1989 Sep; 11(5):345-7. PubMed ID: 2482806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.