These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 28657104)

  • 1. An investigation of Na-related defects in Cu
    Han M; Zhang X; Zeng Z
    Phys Chem Chem Phys; 2017 Jul; 19(27):17799-17804. PubMed ID: 28657104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the Reaction Pathway on the Defect Formation in a Cu
    Yoo H; Jang JS; Shin SW; Lee J; Kim J; Kim DM; Lee IJ; Lee BH; Park J; Kim JH
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13425-13433. PubMed ID: 33706505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of Cu2ZnSnSe4 Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency.
    Li J; Wang H; Wu L; Chen C; Zhou Z; Liu F; Sun Y; Han J; Zhang Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10283-92. PubMed ID: 27058738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers.
    Chen S; Walsh A; Gong XG; Wei SH
    Adv Mater; 2013 Mar; 25(11):1522-39. PubMed ID: 23401176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders.
    Yang Y; Wang G; Zhao W; Tian Q; Huang L; Pan D
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):460-4. PubMed ID: 25494493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and electronic properties of grain boundaries in earth-abundant photovoltaic absorber Cu2ZnSnSe4.
    Li J; Mitzi DB; Shenoy VB
    ACS Nano; 2011 Nov; 5(11):8613-9. PubMed ID: 22007834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KCN Chemical Etch for Interface Engineering in Cu2ZnSnSe4 Solar Cells.
    Buffière M; Brammertz G; Sahayaraj S; Batuk M; Khelifi S; Mangin D; El Mel AA; Arzel L; Hadermann J; Meuris M; Poortmans J
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14690-8. PubMed ID: 26039042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Intrinsic Defects in Enhancing the Photoabsorption Capability of CuZn
    Jyothirmai MV; Thapa R
    ACS Omega; 2022 Sep; 7(35):31098-31105. PubMed ID: 36092564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium-assisted passivation of grain boundaries and defects in Cu
    Kim J; Kim GY; Nguyen TTT; Yoon S; Kim YK; Lee SY; Kim M; Cho DH; Chung YD; Lee JH; Seong MJ; Jo W
    Phys Chem Chem Phys; 2020 Apr; 22(14):7597-7605. PubMed ID: 32226986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale growth of Cu2ZnSnSe4 and Cu2ZnSnSe4/Cu2ZnSnS4 core/shell nanowires.
    Li ZQ; Shi JH; Liu QQ; Chen YW; Sun Z; Yang Z; Huang SM
    Nanotechnology; 2011 Jul; 22(26):265615. PubMed ID: 21586809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Native defects in oxide semiconductors: a density functional approach.
    Oba F; Choi M; Togo A; Seko A; Tanaka I
    J Phys Condens Matter; 2010 Sep; 22(38):384211. PubMed ID: 21386545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stability domain of the selenide kesterite photovoltaic materials and NMR investigation of the Cu/Zn disorder in Cu2ZnSnSe4 (CZTSe).
    Choubrac L; Lafond A; Paris M; Guillot-Deudon C; Jobic S
    Phys Chem Chem Phys; 2015 Jun; 17(23):15088-92. PubMed ID: 25990030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unveiling the atomic defects and electronic structure of Cu
    Huang W; Zhu Y; Liu Y; Liu L; Yang C; Xu W
    Phys Chem Chem Phys; 2020 May; 22(17):9362-9367. PubMed ID: 32309829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient copper-zinc-tin-selenide (CZTSe) solar cells by electrodeposition.
    Jeon JO; Lee KD; Seul Oh L; Seo SW; Lee DK; Kim H; Jeong JH; Ko MJ; Kim B; Son HJ; Kim JY
    ChemSusChem; 2014 Apr; 7(4):1073-7. PubMed ID: 24692285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of excess selenium on the opto-electronic properties of Cu
    Taskesen T; Pareek D; Neerken J; Schoneberg J; Hirwa H; Nowak D; Parisi J; Gütay L
    RSC Adv; 2019 Jul; 9(36):20857-20864. PubMed ID: 35515521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First principles study of point defects in SnS.
    Malone BD; Gali A; Kaxiras E
    Phys Chem Chem Phys; 2014 Dec; 16(47):26176-83. PubMed ID: 25363023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile hot-injection synthesis of stoichiometric Cu2ZnSnSe4 nanocrystals using bis(triethylsilyl) selenide.
    Jin C; Ramasamy P; Kim J
    Dalton Trans; 2014 Jul; 43(25):9481-5. PubMed ID: 24823944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ag2ZnSn(S,Se)4: A highly promising absorber for thin film photovoltaics.
    Chagarov E; Sardashti K; Kummel AC; Lee YS; Haight R; Gershon TS
    J Chem Phys; 2016 Mar; 144(10):104704. PubMed ID: 26979701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hot-Injection Synthesis of Cu-Doped Cu₂ZnSnSe₄ Nanocrystals to Reach Thermoelectric zT of 0.70 at 450°C.
    Chen D; Zhao Y; Chen Y; Wang B; Wang Y; Zhou J; Liang Z
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24403-8. PubMed ID: 26497358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles study of the formation and migration of native defects in LiNH2BH3.
    Chen X; Zhao YJ; Yu X
    Phys Chem Chem Phys; 2013 Jan; 15(3):893-900. PubMed ID: 23201750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.