These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28657290)

  • 1. Relaxation-Induced Memory Effect of LiFePO
    Jia J; Tan C; Liu M; Li D; Chen Y
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24561-24567. PubMed ID: 28657290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-Dependent Memory Effect of the LiFePO
    Guo X; Song B; Yu G; Wu X; Feng X; Li D; Chen Y
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41407-41414. PubMed ID: 30396271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of LiFePO
    Lan T; Guo X; Li D; Chen Y
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34200534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible Al-Site Switching and Consequent Memory Effect of Al-Doped Li
    Zhang L; Yang Z; Hu F; Feng X; Li D; Chen Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17415-17423. PubMed ID: 32195570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doping-induced memory effect in Li-ion batteries: the case of Al-doped Li
    Li D; Sun Y; Liu X; Peng R; Zhou H
    Chem Sci; 2015 Jul; 6(7):4066-4070. PubMed ID: 28717466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation Between Li-Fe Anti-Site and Memory Effect of LiFePO
    Lu X; Ren Y; Chen D; Guo X; Li D; Chen Y
    Chem Asian J; 2024 Jul; 19(14):e202400181. PubMed ID: 38705859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries.
    Zhu Y; Xu Y; Liu Y; Luo C; Wang C
    Nanoscale; 2013 Jan; 5(2):780-7. PubMed ID: 23235803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailored surface structure of LiFePO4/C nanofibers by phosphidation and their electrochemical superiority for lithium rechargeable batteries.
    Lee YC; Han DW; Park M; Jo MR; Kang SH; Lee JK; Kang YM
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9435-41. PubMed ID: 24786736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational Design of Effective Binders for LiFePO
    Huang S; Huang X; Huang Y; He X; Zhuo H; Chen S
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling.
    Zhang X; van Hulzen M; Singh DP; Brownrigg A; Wright JP; van Dijk NH; Wagemaker M
    Nat Commun; 2015 Sep; 6():8333. PubMed ID: 26395323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable morphology synthesis of LiFePO4 nanoparticles as cathode materials for lithium ion batteries.
    Ma Z; Shao G; Fan Y; Wang G; Song J; Liu T
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9236-44. PubMed ID: 24892948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superstructure in the Metastable Intermediate-Phase Li2/3 FePO4 Accelerating the Lithium Battery Cathode Reaction.
    Nishimura S; Natsui R; Yamada A
    Angew Chem Int Ed Engl; 2015 Jul; 54(31):8939-42. PubMed ID: 26074480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stable filamentous coaxial microelectrode for Li-ion batteries: a case of olivine LiFePO
    Guo X; Lan T; Zhang L; Tan J; Feng X; Li D; Chen Y
    Chem Commun (Camb); 2019 Mar; 55(24):3529-3531. PubMed ID: 30840006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte.
    Wu J; Cai W; Shang G
    Nanoscale Res Lett; 2016 Dec; 11(1):223. PubMed ID: 27117633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thin film rechargeable electrodes based on conductive blends of nanostructured olivine LiFePO4 and sucrose derived nanocarbons for lithium ion batteries.
    Praveen P; Jyothsna U; Nair P; Ravi S; Balakrishnan A; Subramanian KR; Nair AS; Nair VS; Sivakumar N
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5607-12. PubMed ID: 23882803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(ethylene oxide)-co-poly(propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries.
    Wang SH; Hou SS; Kuo PL; Teng H
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8477-85. PubMed ID: 23931907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave synthesis of molybdenum doped LiFePO4/C and its electrochemical studies.
    Naik A; P SC
    Dalton Trans; 2016 May; 45(19):8021-7. PubMed ID: 27071463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Memory effect in a lithium-ion battery.
    Sasaki T; Ukyo Y; Novák P
    Nat Mater; 2013 Jun; 12(6):569-75. PubMed ID: 23584142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries.
    Qiu L; Shao Z; Wang D; Wang F; Wang W; Wang J
    Carbohydr Polym; 2014 Nov; 112():532-8. PubMed ID: 25129778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.