These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28657452)

  • 1. Tuning of the surface biological behavior of poly(L-lactide)-based composites by the incorporation of polyelectrolyte complexes for bone regeneration.
    Wang X; Wei J; Chen J; Tang S
    J Biomater Sci Polym Ed; 2017 Oct; 28(15):1713-1727. PubMed ID: 28657452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repair of bone defect in femoral condyle using microencapsulated chitosan, nanohydroxyapatite/collagen and poly(L-lactide)-based microsphere-scaffold delivery system.
    Niu X; Fan Y; Liu X; Li X; Li P; Wang J; Sha Z; Feng Q
    Artif Organs; 2011 Jul; 35(7):E119-28. PubMed ID: 21658081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of engineered low-modulus Mg/PLLA composites as potential orthopaedic implants: An in vitro and in vivo study.
    Yu X; Huang W; Zhao D; Yang K; Tan L; Zhang X; Li J; Zhang M; Zhang S; Liu T; Wu B; Qu M; Duan R; Yuan Y
    Colloids Surf B Biointerfaces; 2019 Feb; 174():280-290. PubMed ID: 30469049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogeneous chitosan/poly(L-lactide) composite scaffolds prepared by emulsion freeze-drying.
    Niu X; Li X; Liu H; Zhou G; Feng Q; Cui F; Fan Y
    J Biomater Sci Polym Ed; 2012; 23(1-4):391-404. PubMed ID: 21255484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure, morphology and cell affinity of poly(L-lactide) films surface-functionalized with chitosan nanofibers via a solid-liquid phase separation technique.
    Zhao J; Han W; Tang M; Tu M; Zeng R; Liang Z; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1546-53. PubMed ID: 23827607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatibility, degradability, bioactivity and osteogenesis of mesoporous/macroporous scaffolds of mesoporous diopside/poly(L-lactide) composite.
    Liu Z; Ji J; Tang S; Qian J; Yan Y; Yu B; Su J; Wei J
    J R Soc Interface; 2015 Oct; 12(111):20150507. PubMed ID: 26378120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation, mechanical property and cytocompatibility of poly(L-lactic acid)/calcium silicate nanocomposites with controllable distribution of calcium silicate nanowires.
    Dou Y; Wu C; Chang J
    Acta Biomater; 2012 Nov; 8(11):4139-50. PubMed ID: 22813849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of absorbable hemostatic agents of polyelectrolyte complexes using carboxymethyl starch and chitosan oligosaccharide both in vitro and in vivo.
    Chen X; Yan Y; Li H; Wang X; Tang S; Li Q; Wei J; Su J
    Biomater Sci; 2018 Nov; 6(12):3332-3344. PubMed ID: 30357165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds.
    Xie L; Yu H; Yang W; Zhu Z; Yue L
    J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of nano-fibrous poly(L-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber.
    Lou T; Wang X; Song G
    Int J Biol Macromol; 2013 Oct; 61():353-8. PubMed ID: 23928011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun magnetic poly(L-lactide) (PLLA) nanofibers by incorporating PLLA-stabilized Fe3O4 nanoparticles.
    Shan D; Shi Y; Duan S; Wei Y; Cai Q; Yang X
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3498-505. PubMed ID: 23706239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(L-lactide) composites.
    Liu A; Hong Z; Zhuang X; Chen X; Cui Y; Liu Y; Jing X
    Acta Biomater; 2008 Jul; 4(4):1005-15. PubMed ID: 18359672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning of the surface biological behavior of poly(L-lactide)-based electrospun materials by polyelectrolyte complex formation.
    Yancheva E; Paneva D; Manolova N; Mincheva R; Danchev D; Dubois P; Rashkov I
    Biomacromolecules; 2010 Feb; 11(2):521-32. PubMed ID: 20058911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro cell response to differences in poly-L-lactide crystallinity.
    Park A; Cima LG
    J Biomed Mater Res; 1996 May; 31(1):117-30. PubMed ID: 8731156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gum tragacanth/poly(l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage.
    Ranjbar-Mohammadi M; Prabhakaran MP; Bahrami SH; Ramakrishna S
    Carbohydr Polym; 2016 Apr; 140():104-12. PubMed ID: 26876833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun nanofibrous scaffolds of poly (L-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration.
    Dong S; Sun J; Li Y; Li J; Cui W; Li B
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():426-33. PubMed ID: 24411397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D scaffold of PLLA/pearl and PLLA/nacre powder for bone regeneration.
    Liu Y; Huang Q; Feng Q
    Biomed Mater; 2013 Dec; 8(6):065001. PubMed ID: 24225162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced pH stability, cell viability and reduced degradation rate of poly(L-lactide)-based composite in vitro: effect of modified magnesium oxide nanoparticles.
    Yang J; Cao X; Zhao Y; Wang L; Liu B; Jia J; Liang H; Chen M
    J Biomater Sci Polym Ed; 2017 Apr; 28(5):486-503. PubMed ID: 28054502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing effect of poly(L-lactide) on the differentiation of mouse osteoblast-like MC3T3-E1 cells.
    Isama K; Tsuchiya T
    Biomaterials; 2003 Aug; 24(19):3303-9. PubMed ID: 12763458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Research on cell affinity of poly-L-lactide/porcine-derived xenogeneic bone composite in vitro].
    Qu X; Bei J; Wang S
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):110-4. PubMed ID: 17357454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.