BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 28657493)

  • 1. Three-dimensional graphene oxide-coated polyurethane foams beneficial to myogenesis.
    Shin YC; Kang SH; Lee JH; Kim B; Hong SW; Han DW
    J Biomater Sci Polym Ed; 2018; 29(7-9):762-774. PubMed ID: 28657493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospinning of Scaffolds from the Polycaprolactone/Polyurethane Composite with Graphene Oxide for Skin Tissue Engineering.
    Sadeghianmaryan A; Karimi Y; Naghieh S; Alizadeh Sardroud H; Gorji M; Chen X
    Appl Biochem Biotechnol; 2020 Jun; 191(2):567-578. PubMed ID: 31823274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices.
    Shin YC; Lee JH; Jin L; Kim MJ; Kim YJ; Hyun JK; Jung TG; Hong SW; Han DW
    J Nanobiotechnology; 2015 Mar; 13():21. PubMed ID: 25886153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation.
    Jo H; Sim M; Kim S; Yang S; Yoo Y; Park JH; Yoon TH; Kim MG; Lee JY
    Acta Biomater; 2017 Jan; 48():100-109. PubMed ID: 27989919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering.
    Wen YT; Dai NT; Hsu SH
    Acta Biomater; 2019 Apr; 88():301-313. PubMed ID: 30825604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel polyurethane-based biodegradable elastomer as a promising material for skeletal muscle tissue engineering.
    Ergene E; Yagci BS; Gokyer S; Eyidogan A; Aksoy EA; Yilgor Huri P
    Biomed Mater; 2019 Feb; 14(2):025014. PubMed ID: 30665203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration.
    Meskinfam M; Bertoldi S; Albanese N; Cerri A; Tanzi MC; Imani R; Baheiraei N; Farokhi M; Farè S
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():130-140. PubMed ID: 29025641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth.
    Zhang K; Zheng H; Liang S; Gao C
    Acta Biomater; 2016 Jun; 37():131-42. PubMed ID: 27063493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titanium - castor oil based polyurethane composite foams for bone tissue engineering.
    Aguilar-Pérez FJ; Vargas-Coronado RF; Cervantes-Uc JM; Cauich-Rodríguez JV; Rosales-Ibañez R; Rodríguez-Ortiz JA; Torres-Hernández Y
    J Biomater Sci Polym Ed; 2019 Oct; 30(15):1415-1432. PubMed ID: 31233380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis.
    Angeloni V; Contessi N; De Marco C; Bertoldi S; Tanzi MC; Daidone MG; Farè S
    Acta Biomater; 2017 Nov; 63():306-316. PubMed ID: 28927931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.
    Hung KC; Tseng CS; Dai LG; Hsu SH
    Biomaterials; 2016 Mar; 83():156-68. PubMed ID: 26774563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Dimensional Black Phosphorus and Graphene Oxide Nanosheets Synergistically Enhance Cell Proliferation and Osteogenesis on 3D Printed Scaffolds.
    Liu X; Miller AL; Park S; George MN; Waletzki BE; Xu H; Terzic A; Lu L
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23558-23572. PubMed ID: 31199116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of new biocompatible 3D printed graphene oxide-based scaffolds.
    Belaid H; Nagarajan S; Teyssier C; Barou C; Barés J; Balme S; Garay H; Huon V; Cornu D; Cavaillès V; Bechelany M
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110595. PubMed ID: 32204059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle regeneration on protein-grafted and microchannel-patterned scaffold for hypopharyngeal tissue engineering.
    Shen Z; Guo S; Ye D; Chen J; Kang C; Qiu S; Lu D; Li Q; Xu K; Lv J; Zhu Y
    Biomed Res Int; 2013; 2013():146953. PubMed ID: 24175281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering.
    Tsai MC; Hung KC; Hung SC; Hsu SH
    Colloids Surf B Biointerfaces; 2015 Jan; 125():34-44. PubMed ID: 25460599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide.
    Kanayama I; Miyaji H; Takita H; Nishida E; Tsuji M; Fugetsu B; Sun L; Inoue K; Ibara A; Akasaka T; Sugaya T; Kawanami M
    Int J Nanomedicine; 2014; 9():3363-73. PubMed ID: 25050063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential use of 3D-printed graphene oxide scaffold for construction of the cartilage layer.
    Cheng Z; Xigong L; Weiyi D; Jingen H; Shuo W; Xiangjin L; Junsong W
    J Nanobiotechnology; 2020 Jul; 18(1):97. PubMed ID: 32664992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyurethane/poly(d,l-lactic acid) scaffolds based on supercritical fluid technology for biomedical applications: Studies with L929 cells.
    Savaris M; Garcia CSC; Roesch-Ely M; Henriques JAP; Dos Santos V; Brandalise RN
    Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():539-551. PubMed ID: 30606564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Printable Gelatin Hydrogels Incorporating Graphene Oxide to Enable Spontaneous Myogenic Differentiation.
    Kang MS; Kang JI; Le Thi P; Park KM; Hong SW; Choi YS; Han DW; Park KD
    ACS Macro Lett; 2021 Apr; 10(4):426-432. PubMed ID: 35549236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.