These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28657705)

  • 1. New Insight of Li-Doped Cu
    Yang Y; Huang L; Pan D
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23878-23883. PubMed ID: 28657705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the Band Gap of Cu₂ZnSn(S,Se)₄ Thin Films via Lithium Alloying.
    Yang Y; Kang X; Huang L; Pan D
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5308-13. PubMed ID: 26837657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the Role of Rb Doping for Highly Efficient Kesterite Cu
    Miao C; Sui Y; Cui Y; Wang Z; Yang L; Wang F; Liu X; Yao B
    Molecules; 2024 Aug; 29(15):. PubMed ID: 39125076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase-Separation-Induced Crystal Growth for Large-Grained Cu
    Huang L; Wei S; Pan D
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35069-35078. PubMed ID: 30247020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Na Dynamics at the Cu2ZnSn(S,Se)4/CdS Interface During Post Low Temperature Treatment of Absorbers.
    Xie H; López-Marino S; Olar T; Sánchez Y; Neuschitzer M; Oliva F; Giraldo S; Izquierdo-Roca V; Lauermann I; Pérez-Rodríguez A; Saucedo E
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):5017-24. PubMed ID: 26836750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substitution of Ag for Cu in Cu
    Wu Y; Sui Y; He W; Zeng F; Wang Z; Wang F; Yao B; Yang L
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31947756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doping of Sb into Cu
    Zhao B; Deng Y; Cao L; Zhu J; Zhou Z
    Front Chem; 2022; 10():974761. PubMed ID: 36017168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significantly Improving the Crystal Growth of a Cu
    Shi X; Wang Y; Yu H; Wang G; Huang L; Pan D
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41590-41595. PubMed ID: 32814424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the Device Performance of CZTSSe Thin-Film Solar Cells via Indium Doping.
    Korade SD; Gour KS; Karade VC; Jang JS; Rehan M; Patil SS; Bhat TS; Patil AP; Yun JH; Park J; Kim JH; Patil PS
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38047907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Cu-Zn-Sn-O Precursor to Optimize CZTSSe Thin Films Fabricated by Se Doping With CZTS Thin Films.
    Li Q; Hu J; Cui Y; Wang J; Hao Y; Shen T; Duan L
    Front Chem; 2021; 9():621549. PubMed ID: 33937187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells.
    Altamura G; Wang M; Choy KL
    Sci Rep; 2016 Feb; 6():22109. PubMed ID: 26916212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influencing Mechanism of the Selenization Temperature and Time on the Power Conversion Efficiency of Cu2ZnSn(S,Se)4-Based Solar Cells.
    Xiao ZY; Yao B; Li YF; Ding ZH; Gao ZM; Zhao HF; Zhang LG; Zhang ZZ; Sui YR; Wang G
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17334-42. PubMed ID: 27323648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fostering Charge Carrier Transport and Absorber Growth Properties in CZTSSe Thin Films with an ALD-SnO
    Gour KS; Pawar PS; Lee M; Karade VC; Yun JS; Heo J; Park J; Yun JH; Kim JH
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):30010-30019. PubMed ID: 38814930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-Processed Cu2ZnSn(S,Se) 4 Thin-Film Solar Cells Using Elemental Cu, Zn, Sn, S, and Se Powders as Source.
    Guo J; Pei Y; Zhou Z; Zhou W; Kou D; Wu S
    Nanoscale Res Lett; 2015 Dec; 10(1):1045. PubMed ID: 26293494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 8% Efficiency Cu
    Jo E; Gang MG; Shim H; Suryawanshi MP; Ghorpade UV; Kim JH
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23118-23124. PubMed ID: 31252467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth mechanism of Ge-doped CZTSSe thin film by sputtering method and solar cells.
    Li J; Shen H; Chen J; Li Y; Yang J
    Phys Chem Chem Phys; 2016 Oct; 18(41):28829-28834. PubMed ID: 27722651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium-assisted passivation of grain boundaries and defects in Cu
    Kim J; Kim GY; Nguyen TTT; Yoon S; Kim YK; Lee SY; Kim M; Cho DH; Chung YD; Lee JH; Seong MJ; Jo W
    Phys Chem Chem Phys; 2020 Apr; 22(14):7597-7605. PubMed ID: 32226986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible High-Efficiency CZTSSe Solar Cells on Diverse Flexible Substrates via an Adhesive-Bonding Transfer Method.
    Min JH; Jeong WL; Kim K; Lee JS; Kim KP; Kim J; Gang MG; Hong CW; Kim JH; Lee DS
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8189-8197. PubMed ID: 31994389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Study on the Effects of Selenization Temperature on the Properties of Na-Doped Cu
    Wang Z; Jiang D; Zeng F; Sui Y
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled Li Alloying by Postsynthesis Electrochemical Treatment of Cu
    Moser S; Aribia A; Scaffidi R; Gilshtein E; Brammertz G; Vermang B; Tiwari AN; Carron R
    ACS Appl Energy Mater; 2023 Dec; 6(24):12515-12525. PubMed ID: 38155875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.