These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28657717)

  • 1. Hydrogenation of CO
    Burgess SA; Grubel K; Appel AM; Wiedner ES; Linehan JC
    Inorg Chem; 2017 Jul; 56(14):8580-8589. PubMed ID: 28657717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions.
    Jeletic MS; Mock MT; Appel AM; Linehan JC
    J Am Chem Soc; 2013 Aug; 135(31):11533-6. PubMed ID: 23869651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and electrochemical studies of cobalt(III) monohydride complexes containing pendant amines.
    Wiedner ES; Roberts JA; Dougherty WG; Kassel WS; DuBois DL; Bullock RM
    Inorg Chem; 2013 Sep; 52(17):9975-88. PubMed ID: 23945020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermochemical and mechanistic studies of electrocatalytic hydrogen production by cobalt complexes containing pendant amines.
    Wiedner ES; Appel AM; DuBois DL; Bullock RM
    Inorg Chem; 2013 Dec; 52(24):14391-403. PubMed ID: 24261463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays.
    Bullock RM; Helm ML
    Acc Chem Res; 2015 Jul; 48(7):2017-26. PubMed ID: 26079983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature and Solvent Effects on H
    Hu J; Bruch QJ; Miller AJM
    J Am Chem Soc; 2021 Jan; 143(2):945-954. PubMed ID: 33383987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly active copper catalyst for the hydrogenation of carbon dioxide to formate under ambient conditions.
    Chaudhary K; Trivedi M; Masram DT; Kumar A; Kumar G; Husain A; Rath NP
    Dalton Trans; 2020 Mar; 49(9):2994-3000. PubMed ID: 32083266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room-Temperature CO
    Sugiyama H; Miyazaki M; Sasase M; Kitano M; Hosono H
    J Am Chem Soc; 2023 May; 145(17):9410-9416. PubMed ID: 36995761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneous hydrogenation of CO₂ to methyl formate utilizing switchable ionic liquids.
    Yadav M; Linehan JC; Karkamkar AJ; van der Eide E; Heldebrant DJ
    Inorg Chem; 2014 Sep; 53(18):9849-54. PubMed ID: 25170785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cp*Co(III) catalysts with proton-responsive ligands for carbon dioxide hydrogenation in aqueous media.
    Badiei YM; Wang WH; Hull JF; Szalda DJ; Muckerman JT; Himeda Y; Fujita E
    Inorg Chem; 2013 Nov; 52(21):12576-86. PubMed ID: 24131038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogenation of CO
    Kann A; Hartmann H; Besmehn A; Hausoul PJC; Palkovits R
    ChemSusChem; 2018 Jun; 11(11):1857-1865. PubMed ID: 29694717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon.
    Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formylation of Amines by CO
    Affan MA; Schatte G; Jessop PG
    Inorg Chem; 2020 Oct; 59(19):14275-14279. PubMed ID: 32960573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methanol synthesis via CO₂ hydrogenation over a Au/ZnO catalyst: an isotope labelling study on the role of CO in the reaction process.
    Hartadi Y; Widmann D; Behm RJ
    Phys Chem Chem Phys; 2016 Apr; 18(16):10781-91. PubMed ID: 26923815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic Studies on NaHCO
    Marcos R; Bertini F; Rinkevicius Z; Peruzzini M; Gonsalvi L; Ahlquist MSG
    Chemistry; 2018 Apr; 24(20):5366-5372. PubMed ID: 29243870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand.
    Wang L; Onishi N; Murata K; Hirose T; Muckerman JT; Fujita E; Himeda Y
    ChemSusChem; 2017 Mar; 10(6):1071-1075. PubMed ID: 27860395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Hydrogenation of CO
    Kanega R; Onishi N; Tanaka S; Kishimoto H; Himeda Y
    J Am Chem Soc; 2021 Jan; 143(3):1570-1576. PubMed ID: 33439639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change.
    Kothandaraman J; Czaun M; Goeppert A; Haiges R; Jones JP; May RB; Prakash GK; Olah GA
    ChemSusChem; 2015 Apr; 8(8):1442-51. PubMed ID: 25824142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic Analysis of Metal-Ligand Cooperativity of PNP Ru Complexes: Implications for CO
    Mathis CL; Geary J; Ardon Y; Reese MS; Philliber MA; VanderLinden RT; Saouma CT
    J Am Chem Soc; 2019 Sep; 141(36):14317-14328. PubMed ID: 31390860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO2 hydrogenation.
    Melaet G; Ralston WT; Li CS; Alayoglu S; An K; Musselwhite N; Kalkan B; Somorjai GA
    J Am Chem Soc; 2014 Feb; 136(6):2260-3. PubMed ID: 24460136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.