These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28657717)

  • 21. Catalytic Formylation of Primary and Secondary Amines with CO
    Affan MA; Jessop PG
    Inorg Chem; 2017 Jun; 56(12):7301-7305. PubMed ID: 28586216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifying the preferential pathways of CO
    Mandal SC; Pathak B
    Dalton Trans; 2021 Jul; 50(27):9598-9609. PubMed ID: 34160489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designing Catalytic Systems Using Binary Solvent Mixtures: Impact of Mole Fraction of Water on Hydride Transfer.
    Mayberry DD; Linehan JC; Appel AM
    Inorg Chem; 2021 Nov; 60(22):17132-17140. PubMed ID: 34723498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A rechargeable hydrogen battery based on Ru catalysis.
    Hsu SF; Rommel S; Eversfield P; Muller K; Klemm E; Thiel WR; Plietker B
    Angew Chem Int Ed Engl; 2014 Jul; 53(27):7074-8. PubMed ID: 24803414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrogenation of CO2 to Formic Acid with a Highly Active Ruthenium Acriphos Complex in DMSO and DMSO/Water.
    Rohmann K; Kothe J; Haenel MW; Englert U; Hölscher M; Leitner W
    Angew Chem Int Ed Engl; 2016 Jul; 55(31):8966-9. PubMed ID: 27356513
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface functionalized highly porous date seed derived activated carbon and MoS
    Bharath G; Rambabu K; Morajkar PP; Jayaraman R; Theerthagiri J; Lee SJ; Choi MY; Banat F
    J Hazard Mater; 2021 May; 409():124980. PubMed ID: 33418290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase.
    Chen X; Jing Y; Yang X
    Chemistry; 2016 Jun; 22(26):8897-902. PubMed ID: 27225505
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogenation of CO
    Yan X; Ge H; Yang X
    Inorg Chem; 2019 May; 58(9):5494-5502. PubMed ID: 31025565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design.
    Ge H; Chen X; Yang X
    Chemistry; 2017 Jul; 23(37):8850-8856. PubMed ID: 28409860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-Temperature Hydrogenation of Carbon Dioxide to Methanol with a Homogeneous Cobalt Catalyst.
    Schneidewind J; Adam R; Baumann W; Jackstell R; Beller M
    Angew Chem Int Ed Engl; 2017 Feb; 56(7):1890-1893. PubMed ID: 28078748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective Hydrogenation of Furfural to Furfuryl Alcohol in the Presence of a Recyclable Cobalt/SBA-15 Catalyst.
    Audemar M; Ciotonea C; De Oliveira Vigier K; Royer S; Ungureanu A; Dragoi B; Dumitriu E; Jérôme F
    ChemSusChem; 2015 Jun; 8(11):1885-91. PubMed ID: 25891431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced Base-Free Formic Acid Production from CO
    Mondelli C; Puértolas B; Ackermann M; Chen Z; Pérez-Ramírez J
    ChemSusChem; 2018 Sep; 11(17):2859-2869. PubMed ID: 29998552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioinspired Design and Computational Prediction of Iron Complexes with Pendant Amines for the Production of Methanol from CO2 and H2.
    Chen X; Yang X
    J Phys Chem Lett; 2016 Mar; 7(6):1035-41. PubMed ID: 26937854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study.
    Mondal B; Neese F; Ye S
    Inorg Chem; 2015 Aug; 54(15):7192-8. PubMed ID: 26204267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrative CO
    Kar S; Sen R; Goeppert A; Prakash GKS
    J Am Chem Soc; 2018 Feb; 140(5):1580-1583. PubMed ID: 29363957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mild and selective hydrogenation of CO
    Wang HH; Zhang SN; Zhao TJ; Liu YX; Liu X; Su J; Li XH; Chen JS
    Sci Bull (Beijing); 2020 Apr; 65(8):651-657. PubMed ID: 36659134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of a catalyst through Fe doping of the boron cage B
    Qian L; Ma KY; Zhou ZJ; Ma F
    Phys Chem Chem Phys; 2017 Dec; 19(48):32723-32732. PubMed ID: 29199289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facile insertion of carbon dioxide into Cu₂(μ-H) dinuclear units supported by tetraphosphine ligands.
    Nakamae K; Kure B; Nakajima T; Ura Y; Tanase T
    Chem Asian J; 2014 Nov; 9(11):3106-10. PubMed ID: 25204731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient and selective molecular catalyst for the CO2-to-CO electrochemical conversion in water.
    Costentin C; Robert M; Savéant JM; Tatin A
    Proc Natl Acad Sci U S A; 2015 Jun; 112(22):6882-6. PubMed ID: 26038542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst.
    Korstanje TJ; van der Vlugt JI; Elsevier CJ; de Bruin B
    Science; 2015 Oct; 350(6258):298-302. PubMed ID: 26472903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.