BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 28657724)

  • 1. Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9.
    Tao P; Wu X; Tang WC; Zhu J; Rao V
    ACS Synth Biol; 2017 Oct; 6(10):1952-1961. PubMed ID: 28657724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9.
    Bryson AL; Hwang Y; Sherrill-Mix S; Wu GD; Lewis JD; Black L; Clark TA; Bushman FD
    mBio; 2015 Jun; 6(3):e00648. PubMed ID: 26081634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 4. Bacteriophage T4 Escapes CRISPR Attack by Minihomology Recombination and Repair.
    Wu X; Zhu J; Tao P; Rao VB
    mBio; 2021 Jun; 12(3):e0136121. PubMed ID: 34154416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial CRISPR Systems.
    Liu Y; Dai L; Dong J; Chen C; Zhu J; Rao VB; Tao P
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32938767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of T4 phage engineering via CRISPR/Cas9.
    Duong MM; Carmody CM; Ma Q; Peters JE; Nugen SR
    Sci Rep; 2020 Oct; 10(1):18229. PubMed ID: 33106580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering T4 Bacteriophage for
    Dong J; Chen C; Liu Y; Zhu J; Li M; Rao VB; Tao P
    ACS Synth Biol; 2021 Oct; 10(10):2639-2648. PubMed ID: 34546037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-mediated phage resistance is not impeded by the DNA modifications of phage T4.
    Yaung SJ; Esvelt KM; Church GM
    PLoS One; 2014; 9(6):e98811. PubMed ID: 24886988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Landscape of New Nuclease-Containing Antiphage Systems in Escherichia coli and the Counterdefense Roles of Bacteriophage T4 Genome Modifications.
    Wang S; Sun E; Liu Y; Yin B; Zhang X; Li M; Huang Q; Tan C; Qian P; Rao VB; Tao P
    J Virol; 2023 Jun; 97(6):e0059923. PubMed ID: 37306585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces.
    Huang H; Zheng G; Jiang W; Hu H; Lu Y
    Acta Biochim Biophys Sin (Shanghai); 2015 Apr; 47(4):231-43. PubMed ID: 25739462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9 Based Bacteriophage Genome Editing.
    Zhang X; Zhang C; Liang C; Li B; Meng F; Ai Y
    Microbiol Spectr; 2022 Aug; 10(4):e0082022. PubMed ID: 35880867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome Engineering of Virulent Lactococcal Phages Using CRISPR-Cas9.
    Lemay ML; Tremblay DM; Moineau S
    ACS Synth Biol; 2017 Jul; 6(7):1351-1358. PubMed ID: 28324650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9; A robust technology for producing genetically engineered plants.
    Farooq R; Hussain K; Nazir S; Javed MR; Masood N
    Cell Mol Biol (Noisy-le-grand); 2018 Nov; 64(14):31-38. PubMed ID: 30511631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generating Mouse Models Using CRISPR-Cas9-Mediated Genome Editing.
    Qin W; Kutny PM; Maser RS; Dion SL; Lamont JD; Zhang Y; Perry GA; Wang H
    Curr Protoc Mouse Biol; 2016 Mar; 6(1):39-66. PubMed ID: 26928663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Engineering.
    Box AM; McGuffie MJ; O'Hara BJ; Seed KD
    J Bacteriol; 2016 Feb; 198(3):578-90. PubMed ID: 26598368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of CRISPR-Cas9 genome editing in Caenorhabditis elegans.
    Xu S
    J Genet Genomics; 2015 Aug; 42(8):413-21. PubMed ID: 26336798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum.
    Wasels F; Jean-Marie J; Collas F; López-Contreras AM; Lopes Ferreira N
    J Microbiol Methods; 2017 Sep; 140():5-11. PubMed ID: 28610973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.