These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
459 related articles for article (PubMed ID: 28657749)
21. Encapsulation of Curcumin in a Ternary Nanocomplex Prepared with Carboxymethyl Short Linear Glucan-Sodium-Caseinate-Pectin Via Electrostatic Interactions. Li W; Yu Y; Dai Z; Peng J; Wu J; Wang Z J Food Sci; 2022 Feb; 87(2):780-794. PubMed ID: 35040140 [TBL] [Abstract][Full Text] [Related]
22. Du Z; Liu J; Zhang H; Wu X; Zhang B; Chen Y; Liu B; Ding L; Xiao H; Zhang T J Agric Food Chem; 2019 Nov; 67(45):12511-12519. PubMed ID: 31626537 [TBL] [Abstract][Full Text] [Related]
24. Enhancement of Curcumin Bioavailability by Encapsulation in Sophorolipid-Coated Nanoparticles: An in Vitro and in Vivo Study. Peng S; Li Z; Zou L; Liu W; Liu C; McClements DJ J Agric Food Chem; 2018 Feb; 66(6):1488-1497. PubMed ID: 29378117 [TBL] [Abstract][Full Text] [Related]
25. Biocompatible Polyelectrolyte Complex Nanoparticles for Lycopene Encapsulation Attenuate Oxidative Stress-Induced Cell Damage. Zhang D; Jiang Y; Xiang M; Wu F; Sun M; Du X; Chen L Front Nutr; 2022; 9():902208. PubMed ID: 35711553 [TBL] [Abstract][Full Text] [Related]
26. Studies on lactoferrin nanoparticles of gambogic acid for oral delivery. Zhang ZH; Wang XP; Ayman WY; Munyendo WL; Lv HX; Zhou JP Drug Deliv; 2013 Feb; 20(2):86-93. PubMed ID: 23495734 [TBL] [Abstract][Full Text] [Related]
27. Fabrication of curcumin-zein-ethyl cellulose composite nanoparticles using antisolvent co-precipitation method. Hasankhan S; Tabibiazar M; Hosseini SM; Ehsani A; Ghorbani M Int J Biol Macromol; 2020 Nov; 163():1538-1545. PubMed ID: 32784024 [TBL] [Abstract][Full Text] [Related]
28. Preparation, characterization and antioxidant properties of curcumin encapsulated chitosan/lignosulfonate micelles. Lin D; Xiao L; Qin W; Loy DA; Wu Z; Chen H; Zhang Q Carbohydr Polym; 2022 Apr; 281():119080. PubMed ID: 35074131 [TBL] [Abstract][Full Text] [Related]
29. Polysaccharide-based nanoparticles fabricated from oppositely charged curdlan derivatives for curcumin encapsulation. Yan JK; Wang ZW; Zhu J; Liu Y; Chen X; Li L Int J Biol Macromol; 2022 Jul; 213():923-933. PubMed ID: 35654222 [TBL] [Abstract][Full Text] [Related]
30. Facile preparation of well-defined near-monodisperse chitosan/sodium alginate polyelectrolyte complex nanoparticles (CS/SAL NPs) via ionotropic gelification: a suitable technique for drug delivery systems. Liu P; Zhao X Biotechnol J; 2013 Jul; 8(7):847-54. PubMed ID: 23625874 [TBL] [Abstract][Full Text] [Related]
31. Synthesis and characterization of lotus seed protein-based curcumin microcapsules with enhanced solubility, stability, and sustained release. Su Y; Chen Y; Zhang L; Adhikari B; Xu B; Li J; Zheng T J Sci Food Agric; 2022 Apr; 102(6):2220-2231. PubMed ID: 34611905 [TBL] [Abstract][Full Text] [Related]
32. Development and performance evaluation of novel nanoparticles of a grafted copolymer loaded with curcumin. Mutalik S; Suthar NA; Managuli RS; Shetty PK; Avadhani K; Kalthur G; Kulkarni RV; Thomas R Int J Biol Macromol; 2016 May; 86():709-20. PubMed ID: 26851203 [TBL] [Abstract][Full Text] [Related]
33. A novel self-assembled nanoparticle platform based on pectin-eight-arm polyethylene glycol-drug conjugates for co-delivery of anticancer drugs. Liu Y; Liu K; Li X; Xiao S; Zheng D; Zhu P; Li C; Liu J; He J; Lei J; Wang L Mater Sci Eng C Mater Biol Appl; 2018 May; 86():28-41. PubMed ID: 29525094 [TBL] [Abstract][Full Text] [Related]
34. Pectin-coated whey protein isolate/zein self-aggregated nanoparticles as curcumin delivery vehicles: Effects of heating, pH, and adding sequence. Gu X; Li W; Jiang X; Chang C; Wu J Int J Biol Macromol; 2024 Feb; 258(Pt 1):128892. PubMed ID: 38134988 [TBL] [Abstract][Full Text] [Related]
35. Preparation of lipid nanoparticles with high loading capacity and exceptional gastrointestinal stability for potential oral delivery applications. Wang T; Xue J; Hu Q; Zhou M; Luo Y J Colloid Interface Sci; 2017 Dec; 507():119-130. PubMed ID: 28780331 [TBL] [Abstract][Full Text] [Related]
36. Novel Soy β-Conglycinin Core-Shell Nanoparticles As Outstanding Ecofriendly Nanocarriers for Curcumin. Liu LL; Liu PZ; Li XT; Zhang N; Tang CH J Agric Food Chem; 2019 Jun; 67(22):6292-6301. PubMed ID: 31117486 [TBL] [Abstract][Full Text] [Related]
37. Effect of polymer architecture on curcumin encapsulation and release from PEGylated polymer nanoparticles: Toward a drug delivery nano-platform to the CNS. Rabanel JM; Faivre J; Paka GD; Ramassamy C; Hildgen P; Banquy X Eur J Pharm Biopharm; 2015 Oct; 96():409-20. PubMed ID: 26409200 [TBL] [Abstract][Full Text] [Related]
38. Construction, stability, and enhanced antioxidant activity of pectin-decorated selenium nanoparticles. Qiu WY; Wang YY; Wang M; Yan JK Colloids Surf B Biointerfaces; 2018 Oct; 170():692-700. PubMed ID: 29986266 [TBL] [Abstract][Full Text] [Related]
39. Curcumin loaded poly(2-hydroxyethyl methacrylate) nanoparticles from gelled ionic liquid--in vitro cytotoxicity and anti-cancer activity in SKOV-3 cells. Kumar SS; Surianarayanan M; Vijayaraghavan R; Mandal AB; MacFarlane DR Eur J Pharm Sci; 2014 Jan; 51():34-44. PubMed ID: 24012589 [TBL] [Abstract][Full Text] [Related]
40. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Peng S; Li Z; Zou L; Liu W; Liu C; McClements DJ Food Funct; 2018 Mar; 9(3):1829-1839. PubMed ID: 29517797 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]