These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 28658517)
1. Microfluidic Formation of Monodisperse Coacervate Organelles in Liposomes. Deng NN; Huck WTS Angew Chem Int Ed Engl; 2017 Aug; 56(33):9736-9740. PubMed ID: 28658517 [TBL] [Abstract][Full Text] [Related]
2. Complex coacervates as artificial membraneless organelles and protocells. Deng NN Biomicrofluidics; 2020 Sep; 14(5):051301. PubMed ID: 32922586 [TBL] [Abstract][Full Text] [Related]
3. RNA-Based Coacervates as a Model for Membraneless Organelles: Formation, Properties, and Interfacial Liposome Assembly. Aumiller WM; Pir Cakmak F; Davis BW; Keating CD Langmuir; 2016 Oct; 32(39):10042-10053. PubMed ID: 27599198 [TBL] [Abstract][Full Text] [Related]
4. pH-Controlled Coacervate-Membrane Interactions within Liposomes. Last MGF; Deshpande S; Dekker C ACS Nano; 2020 Apr; 14(4):4487-4498. PubMed ID: 32239914 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic formation of monodisperse, cell-sized, and unilamellar vesicles. Ota S; Yoshizawa S; Takeuchi S Angew Chem Int Ed Engl; 2009; 48(35):6533-7. PubMed ID: 19644988 [No Abstract] [Full Text] [Related]
6. Monodisperse Uni- and Multicompartment Liposomes. Deng NN; Yelleswarapu M; Huck WT J Am Chem Soc; 2016 Jun; 138(24):7584-91. PubMed ID: 27243596 [TBL] [Abstract][Full Text] [Related]
7. Dynamic Control of Functional Coacervates in Synthetic Cells. Nair KS; Radhakrishnan S; Bajaj H ACS Synth Biol; 2023 Jul; 12(7):2168-2177. PubMed ID: 37337618 [TBL] [Abstract][Full Text] [Related]
8. Photoswitchable Phase Separation and Oligonucleotide Trafficking in DNA Coacervate Microdroplets. Martin N; Tian L; Spencer D; Coutable-Pennarun A; Anderson JLR; Mann S Angew Chem Int Ed Engl; 2019 Oct; 58(41):14594-14598. PubMed ID: 31408263 [TBL] [Abstract][Full Text] [Related]
9. Continuous Transformation from Membrane-Less Coacervates to Membranized Coacervates and Giant Vesicles: Toward Multicompartmental Protocells with Complex (Membrane) Architectures. Zhou Y; Zhang K; Moreno S; Temme A; Voit B; Appelhans D Angew Chem Int Ed Engl; 2024 Aug; 63(34):e202407472. PubMed ID: 38847278 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic Formation of Membrane-Free Aqueous Coacervate Droplets in Water. van Swaay D; Tang TY; Mann S; de Mello A Angew Chem Int Ed Engl; 2015 Jul; 54(29):8398-401. PubMed ID: 26012895 [TBL] [Abstract][Full Text] [Related]
11. Spatiotemporal Dynamic Assembly/Disassembly of Organelle-Mimics Based on Intrinsically Disordered Protein-Polymer Conjugates. Zhao H; Ibarboure E; Ibrahimova V; Xiao Y; Garanger E; Lecommandoux S Adv Sci (Weinh); 2021 Dec; 8(24):e2102508. PubMed ID: 34719874 [TBL] [Abstract][Full Text] [Related]
12. A novel microfluidic-based approach to formulate size-tuneable large unilamellar cationic liposomes: Formulation, cellular uptake and biodistribution investigations. Lou G; Anderluzzi G; Woods S; Roberts CW; Perrie Y Eur J Pharm Biopharm; 2019 Oct; 143():51-60. PubMed ID: 31445156 [TBL] [Abstract][Full Text] [Related]
13. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments. Smokers IBA; Visser BS; Slootbeek AD; Huck WTS; Spruijt E Acc Chem Res; 2024 Jul; 57(14):1885-1895. PubMed ID: 38968602 [TBL] [Abstract][Full Text] [Related]
14. Interfacing Coacervates with Membranes: From Artificial Organelles and Hybrid Protocells to Intracellular Delivery. Lu T; Javed S; Bonfio C; Spruijt E Small Methods; 2023 Dec; 7(12):e2300294. PubMed ID: 37354057 [TBL] [Abstract][Full Text] [Related]
15. Multivesicular droplets: a cell model system to study compartmentalised biochemical reactions. Nuti N; Verboket PE; Dittrich PS Lab Chip; 2017 Sep; 17(18):3112-3119. PubMed ID: 28813055 [TBL] [Abstract][Full Text] [Related]
16. Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells. Zhao H; Ibrahimova V; Garanger E; Lecommandoux S Angew Chem Int Ed Engl; 2020 Jun; 59(27):11028-11036. PubMed ID: 32207864 [TBL] [Abstract][Full Text] [Related]
17. Programmatically Dynamic Microcompartmentation in Coacervate-in-Pickering Emulsion Protocell. Chen M; Liu G; Zhang M; Li Y; Hong X; Yang H Small; 2023 Mar; 19(10):e2206437. PubMed ID: 36564366 [TBL] [Abstract][Full Text] [Related]
18. Spatiotemporal control of coacervate formation within liposomes. Deshpande S; Brandenburg F; Lau A; Last MGF; Spoelstra WK; Reese L; Wunnava S; Dogterom M; Dekker C Nat Commun; 2019 Apr; 10(1):1800. PubMed ID: 30996302 [TBL] [Abstract][Full Text] [Related]
19. Membranization of Coacervates into Artificial Phagocytes with Predation toward Bacteria. Zhao C; Li J; Wang S; Xu Z; Wang X; Liu X; Wang L; Huang X ACS Nano; 2021 Jun; 15(6):10048-10057. PubMed ID: 34047543 [TBL] [Abstract][Full Text] [Related]