These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1015 related articles for article (PubMed ID: 28658542)

  • 21. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation.
    Kasubuchi M; Hasegawa S; Hiramatsu T; Ichimura A; Kimura I
    Nutrients; 2015 Apr; 7(4):2839-49. PubMed ID: 25875123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Butyrate: A Link between Early Life Nutrition and Gut Microbiome in the Development of Food Allergy.
    Di Costanzo M; De Paulis N; Biasucci G
    Life (Basel); 2021 Apr; 11(5):. PubMed ID: 33922797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emerging evidence of the role of gut microbiota in the development of allergic diseases.
    Simonyte Sjödin K; Vidman L; Rydén P; West CE
    Curr Opin Allergy Clin Immunol; 2016 Aug; 16(4):390-5. PubMed ID: 27253486
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vitamin D and Microbiota: Is There a Link with Allergies?
    Murdaca G; Gerosa A; Paladin F; Petrocchi L; Banchero S; Gangemi S
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33924232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Renal Sensing of Bacterial Metabolites in the Gut-kidney Axis.
    Foresto-Neto O; Ghirotto B; Câmara NOS
    Kidney360; 2021 Sep; 2(9):1501-1509. PubMed ID: 35373097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GPR41 and GPR43 in Obesity and Inflammation - Protective or Causative?
    Ang Z; Ding JL
    Front Immunol; 2016; 7():28. PubMed ID: 26870043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gut Microbiome as Target for Innovative Strategies Against Food Allergy.
    Berni Canani R; Paparo L; Nocerino R; Di Scala C; Della Gatta G; Maddalena Y; Buono A; Bruno C; Voto L; Ercolini D
    Front Immunol; 2019; 10():191. PubMed ID: 30828329
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From gut microbiota dysfunction to obesity: could short-chain fatty acids stop this dangerous course?
    Barrea L; Muscogiuri G; Annunziata G; Laudisio D; Pugliese G; Salzano C; Colao A; Savastano S
    Hormones (Athens); 2019 Sep; 18(3):245-250. PubMed ID: 30840230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome.
    Macia L; Tan J; Vieira AT; Leach K; Stanley D; Luong S; Maruya M; Ian McKenzie C; Hijikata A; Wong C; Binge L; Thorburn AN; Chevalier N; Ang C; Marino E; Robert R; Offermanns S; Teixeira MM; Moore RJ; Flavell RA; Fagarasan S; Mackay CR
    Nat Commun; 2015 Apr; 6():6734. PubMed ID: 25828455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases.
    Sun M; Wu W; Liu Z; Cong Y
    J Gastroenterol; 2017 Jan; 52(1):1-8. PubMed ID: 27448578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of diet on hypertensive pathology: is there a link via gut microbiota-driven immunometabolism?
    Jama HA; Beale A; Shihata WA; Marques FZ
    Cardiovasc Res; 2019 Jul; 115(9):1435-1447. PubMed ID: 30951169
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dietary SCFAs, IL-22, and GFAP: The Three Musketeers in the Gut-Neuro-Immune Network in Type 1 Diabetes.
    Jayasimhan A; Mariño E
    Front Immunol; 2019; 10():2429. PubMed ID: 31736937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases.
    Chen B; Sun L; Zhang X
    J Autoimmun; 2017 Sep; 83():31-42. PubMed ID: 28342734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Implications of Diet and The Gut Microbiome in Neuroinflammatory and Neurodegenerative Diseases.
    Hirschberg S; Gisevius B; Duscha A; Haghikia A
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31242699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of short-chain fatty acids in kidney injury induced by gut-derived inflammatory response.
    Huang W; Zhou L; Guo H; Xu Y; Xu Y
    Metabolism; 2017 Mar; 68():20-30. PubMed ID: 28183450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbiome and hypertension: where are we now?
    Vallianou NG; Geladari E; Kounatidis D
    J Cardiovasc Med (Hagerstown); 2020 Feb; 21(2):83-88. PubMed ID: 31809283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Butyrate Produced by Commensal Bacteria Down-Regulates
    Martin-Gallausiaux C; Larraufie P; Jarry A; Béguet-Crespel F; Marinelli L; Ledue F; Reimann F; Blottière HM; Lapaque N
    Front Immunol; 2018; 9():2838. PubMed ID: 30619249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial Peer Pressure: The Role of the Gut Microbiota in Hypertension and Its Complications.
    Muralitharan RR; Jama HA; Xie L; Peh A; Snelson M; Marques FZ
    Hypertension; 2020 Dec; 76(6):1674-1687. PubMed ID: 33012206
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physiological Role of Gut Microbiota for Maintaining Human Health.
    Andoh A
    Digestion; 2016; 93(3):176-81. PubMed ID: 26859303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fiber Derived Microbial Metabolites Prevent Acute Kidney Injury Through G-Protein Coupled Receptors and HDAC Inhibition.
    Liu Y; Li YJ; Loh YW; Singer J; Zhu W; Macia L; Mackay CR; Wang W; Chadban SJ; Wu H
    Front Cell Dev Biol; 2021; 9():648639. PubMed ID: 33898439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 51.