These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 28658585)

  • 1. Transport and flow characteristics of an oscillating cylindrical fiber for total artificial lung application.
    Qamar A; Bull JL
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(11):1195-1211. PubMed ID: 28658585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsatile flow past an oscillating cylinder.
    Qamar A; Seda R; Bull JL
    Phys Fluids (1994); 2011 Apr; 23(4):41903. PubMed ID: 21580804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsatile blood flow and oxygen transport past a circular cylinder.
    Zierenberg JR; Fujioka H; Hirschl RB; Bartlett RH; Grotberg JB
    J Biomech Eng; 2007 Apr; 129(2):202-15. PubMed ID: 17408325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsatile flow past a cylinder: an experimental model of flow in an artificial lung.
    Lin YC; Brant DO; Bartlett RH; Hirschl RB; Bull JL
    ASAIO J; 2006; 52(6):614-23. PubMed ID: 17117049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsatile flow and oxygen transport past cylindrical fiber arrays for an artificial lung: computational and experimental studies.
    Zierenberg JR; Fujioka H; Cook KE; Grotberg JB
    J Biomech Eng; 2008 Jun; 130(3):031019. PubMed ID: 18532868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical study on the dynamics of primary cilium in pulsatile flows by the immersed boundary-lattice Boltzmann method.
    Cui J; Liu Y; Fu BM
    Biomech Model Mechanobiol; 2020 Feb; 19(1):21-35. PubMed ID: 31256275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of gaseous pollutant dispersion around an isolated building using the k-ω SST (shear stress transport) turbulence model.
    Yu H; Thé J
    J Air Waste Manag Assoc; 2017 May; 67(5):517-536. PubMed ID: 27650217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards the prediction of flow-induced shear stress distributions experienced by breast cancer cells in the lymphatics.
    Morley ST; Newport DT; Walsh MT
    Biomech Model Mechanobiol; 2017 Dec; 16(6):2051-2062. PubMed ID: 28741084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-steady peristaltic propulsion with exponential variable viscosity: a study of transport through the digestive system.
    Tripathi D; Pandey SK; Siddiqui A; Bég OA
    Comput Methods Biomech Biomed Engin; 2014; 17(6):591-603. PubMed ID: 22817394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulsatile flow and mass transport over an array of cylinders: gas transfer in a cardiac-driven artificial lung.
    Chan KY; Fujioka H; Bartlett RH; Hirschl RB; Grotberg JB
    J Biomech Eng; 2006 Feb; 128(1):85-96. PubMed ID: 16532621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of different downstream plate length towards the flow-induced vibration on a square cylinder.
    Maruai NM; Ali MSM; Zaki SA; Ardila-Rey JA; Ishak IA
    Sci Rep; 2023 Oct; 13(1):17681. PubMed ID: 37848600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patient-Specific Computational Analysis of Hemodynamics in Adult Pulmonary Hypertension.
    Pillalamarri NR; Piskin S; Patnaik SS; Murali S; Finol EA
    Ann Biomed Eng; 2021 Dec; 49(12):3465-3480. PubMed ID: 34799807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experiment on the pulsatile flow at transitional Reynolds numbers--the fluid dynamical meaning of the blood flow parameters in the aorta.
    Nakamura M; Sugiyama W; Haruna M
    J Biomech Eng; 1993 Nov; 115(4A):412-7. PubMed ID: 8309236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The PELskin project-part V: towards the control of the flow around aerofoils at high angle of attack using a self-activated deployable flap.
    Rosti ME; Kamps L; Bruecker C; Omidyeganeh M; Pinelli A
    Meccanica; 2017; 52(8):1811-1824. PubMed ID: 28529384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsatile blood flow and gas exchange across a cylindrical fiber array.
    Chan KY; Fujioka H; Hirshl RB; Bartlett RH; Grotberg JB
    J Biomech Eng; 2007 Oct; 129(5):676-87. PubMed ID: 17887893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation.
    Causin P; Guidoboni G; Malgaroli F; Sacco R; Harris A
    Biomech Model Mechanobiol; 2016 Jun; 15(3):525-42. PubMed ID: 26232093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of peristaltic flow with pulsatile flow in a circular cylindrical tube.
    Srivastava LM; Srivastava VP
    J Biomech; 1985; 18(4):247-53. PubMed ID: 4019523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary motion in three-dimensional branching networks.
    Guha A; Pradhan K
    Phys Fluids (1994); 2017 Jun; 29(6):063602. PubMed ID: 28713213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase and amplitude of spontaneous retinal vein pulsations: An extended constant inflow and variable outflow model.
    Levine DN; Bebie H
    Microvasc Res; 2016 Jul; 106():67-79. PubMed ID: 26997658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance phenomena in a time-dependent, three-dimensional model of an idealized eddy.
    Rypina II; Pratt LJ; Wang P; Özgökmen TM; Mezic I
    Chaos; 2015 Aug; 25(8):087401. PubMed ID: 26328572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.