These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 28658592)

  • 61. TAGAP instructs Th17 differentiation by bridging Dectin activation to EPHB2 signaling in innate antifungal response.
    Chen J; He R; Sun W; Gao R; Peng Q; Zhu L; Du Y; Ma X; Guo X; Zhang H; Tan C; Wang J; Zhang W; Weng X; Man J; Bauer H; Wang QK; Martin BN; Zhang CJ; Li X; Wang C
    Nat Commun; 2020 Apr; 11(1):1913. PubMed ID: 32312989
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Virulence of the opportunistic pathogen mushroom Candida glabrata].
    Castaño I; Cormack B; De Las Peñas A
    Rev Latinoam Microbiol; 2006; 48(2):66-9. PubMed ID: 17578074
    [TBL] [Abstract][Full Text] [Related]  

  • 63. AIM2 enhances Candida albicans infection through promoting macrophage apoptosis via AKT signaling.
    Jiang Q; Chen Y; Zheng S; Sui L; Yu D; Qing F; He W; Xiao Q; Guo T; Xu L; Liu Z; Liu Z
    Cell Mol Life Sci; 2024 Jun; 81(1):280. PubMed ID: 38918243
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Variable recognition of Candida albicans strains by TLR4 and lectin recognition receptors.
    Netea MG; Gow NA; Joosten LA; Verschueren I; van der Meer JW; Kullberg BJ
    Med Mycol; 2010 Nov; 48(7):897-903. PubMed ID: 20166865
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dectin-1 is required for beta-glucan recognition and control of fungal infection.
    Taylor PR; Tsoni SV; Willment JA; Dennehy KM; Rosas M; Findon H; Haynes K; Steele C; Botto M; Gordon S; Brown GD
    Nat Immunol; 2007 Jan; 8(1):31-8. PubMed ID: 17159984
    [TBL] [Abstract][Full Text] [Related]  

  • 66. CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway.
    Huang JH; Lin CY; Wu SY; Chen WY; Chu CL; Brown GD; Chuu CP; Wu-Hsieh BA
    PLoS Pathog; 2015 Jul; 11(7):e1004985. PubMed ID: 26132276
    [TBL] [Abstract][Full Text] [Related]  

  • 67. An anti-inflammatory property of Candida albicans β-glucan: Induction of high levels of interleukin-1 receptor antagonist via a Dectin-1/CR3 independent mechanism.
    Smeekens SP; Gresnigt MS; Becker KL; Cheng SC; Netea SA; Jacobs L; Jansen T; van de Veerdonk FL; Williams DL; Joosten LA; Dinarello CA; Netea MG
    Cytokine; 2015 Feb; 71(2):215-22. PubMed ID: 25461401
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Insights from human studies into the host defense against candidiasis.
    Filler SG
    Cytokine; 2012 Apr; 58(1):129-32. PubMed ID: 22015104
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Recognition of non-self-polysaccharides by C-type lectin receptors dectin-1 and dectin-2.
    Hollmig ST; Ariizumi K; Cruz PD
    Glycobiology; 2009 Jun; 19(6):568-75. PubMed ID: 19287024
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Epidermal clearance of Candida albicans is mediated by IL-17 but independent of fungal innate immune receptors.
    Iwasawa MT; Miyachi H; Wakabayashi S; Sugihira T; Aoyama R; Nakagawa S; Katayama Y; Yoneyama M; Hara H; Iwakura Y; Matsumoto M; Inohara N; Koguchi-Yoshioka H; Fujimoto M; Núñez G; Matsue H; Nakamura Y; Saijo S
    Int Immunol; 2022 Jul; 34(8):409-420. PubMed ID: 35641096
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Increased susceptibility of TNF-alpha lymphotoxin-alpha double knockout mice to systemic candidiasis through impaired recruitment of neutrophils and phagocytosis of Candida albicans.
    Netea MG; van Tits LJ; Curfs JH; Amiot F; Meis JF; van der Meer JW; Kullberg BJ
    J Immunol; 1999 Aug; 163(3):1498-505. PubMed ID: 10415052
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Treatment of candidiasis: insights from host genetics.
    Delsing CE; Bleeker-Rovers CP; Kullberg BJ; Netea MG
    Expert Rev Anti Infect Ther; 2012 Aug; 10(8):947-56. PubMed ID: 23030333
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Functional genomic analysis of Candida glabrata-macrophage interaction: role of chromatin remodeling in virulence.
    Rai MN; Balusu S; Gorityala N; Dandu L; Kaur R
    PLoS Pathog; 2012; 8(8):e1002863. PubMed ID: 22916016
    [TBL] [Abstract][Full Text] [Related]  

  • 74. CD40/CD40 ligand interactions in the host defense against disseminated Candida albicans infection: the role of macrophage-derived nitric oxide.
    Netea MG; Meer JW; Verschueren I; Kullberg BJ
    Eur J Immunol; 2002 May; 32(5):1455-63. PubMed ID: 11981834
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Candida glabrata and Candida albicans; dissimilar tissue tropism and infectivity in a gnotobiotic model of mucosal candidiasis.
    Westwater C; Schofield DA; Nicholas PJ; Paulling EE; Balish E
    FEMS Immunol Med Microbiol; 2007 Oct; 51(1):134-9. PubMed ID: 17854475
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Genomes shed light on the secret life of Candida glabrata: not so asexual, not so commensal.
    Gabaldón T; Fairhead C
    Curr Genet; 2019 Feb; 65(1):93-98. PubMed ID: 30027485
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Adaptive immune responses to Candida albicans infection.
    Richardson JP; Moyes DL
    Virulence; 2015; 6(4):327-37. PubMed ID: 25607781
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dectin-2-dependent host defense in mice infected with serotype 3 Streptococcus pneumoniae.
    Akahori Y; Miyasaka T; Toyama M; Matsumoto I; Miyahara A; Zong T; Ishii K; Kinjo Y; Miyazaki Y; Saijo S; Iwakura Y; Kawakami K
    BMC Immunol; 2016 Jan; 17():1. PubMed ID: 26727976
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The induction of inflammation by dectin-1 in vivo is dependent on myeloid cell programming and the progression of phagocytosis.
    Rosas M; Liddiard K; Kimberg M; Faro-Trindade I; McDonald JU; Williams DL; Brown GD; Taylor PR
    J Immunol; 2008 Sep; 181(5):3549-57. PubMed ID: 18714028
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Candida glabrata induced infection of rat tracheal epithelial cells is mediated by TLR-2 induced activation of NF-κB.
    Zhang X; Bai J; Wu CL; Wu Y; Zhao Y; Song WM; Luo XP
    Microb Pathog; 2016 Feb; 91():115-22. PubMed ID: 26477714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.