These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28658643)

  • 1. Implicit assumptions underlying simple harvest models of marine bird populations can mislead environmental management decisions.
    O'Brien SH; Cook ASCP; Robinson RA
    J Environ Manage; 2017 Oct; 201():163-171. PubMed ID: 28658643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing vulnerability of marine bird populations to offshore wind farms.
    Furness RW; Wade HM; Masden EA
    J Environ Manage; 2013 Apr; 119():56-66. PubMed ID: 23454414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mortality limits used in wind energy impact assessment underestimate impacts of wind farms on bird populations.
    Schippers P; Buij R; Schotman A; Verboom J; van der Jeugd H; Jongejans E
    Ecol Evol; 2020 Jul; 10(13):6274-6287. PubMed ID: 32724513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Avian sensitivity to mortality: prioritising migratory bird species for assessment at proposed wind farms.
    Desholm M
    J Environ Manage; 2009 Jun; 90(8):2672-9. PubMed ID: 19299065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping seabird sensitivity to offshore wind farms.
    Bradbury G; Trinder M; Furness B; Banks AN; Caldow RW; Hume D
    PLoS One; 2014; 9(9):e106366. PubMed ID: 25210739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the impact of marine wind farms on birds through movement modelling.
    Masden EA; Reeve R; Desholm M; Fox AD; Furness RW; Haydon DT
    J R Soc Interface; 2012 Sep; 9(74):2120-30. PubMed ID: 22552921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying avian avoidance of offshore wind turbines: Current evidence and key knowledge gaps.
    Cook ASCP; Humphreys EM; Bennet F; Masden EA; Burton NHK
    Mar Environ Res; 2018 Sep; 140():278-288. PubMed ID: 29980294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collision and displacement vulnerability to offshore wind energy infrastructure among marine birds of the Pacific Outer Continental Shelf.
    Kelsey EC; Felis JJ; Czapanskiy M; Pereksta DM; Adams J
    J Environ Manage; 2018 Dec; 227():229-247. PubMed ID: 30195148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seabird aggregative patterns: a new tool for offshore wind energy risk assessment.
    Christel I; Certain G; Cama A; Vieites DR; Ferrer X
    Mar Pollut Bull; 2013 Jan; 66(1-2):84-91. PubMed ID: 23212000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Barriers to movement: Modelling energetic costs of avoiding marine wind farms amongst breeding seabirds.
    Masden EA; Haydon DT; Fox AD; Furness RW
    Mar Pollut Bull; 2010 Jul; 60(7):1085-91. PubMed ID: 20188382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of sonar transponders for offshore wind farms: modeling approach, experimental setup, and results.
    Fricke MB; Rolfes R
    J Acoust Soc Am; 2013 Nov; 134(5):3536-45. PubMed ID: 24180764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Satellite telemetry and digital aerial surveys show strong displacement of red-throated divers (Gavia stellata) from offshore wind farms.
    Heinänen S; Žydelis R; Kleinschmidt B; Dorsch M; Burger C; Morkūnas J; Quillfeldt P; Nehls G
    Mar Environ Res; 2020 Sep; 160():104989. PubMed ID: 32907727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vulnerability of northern gannets to offshore wind farms; seasonal and sex-specific collision risk and demographic consequences.
    Lane JV; Jeavons R; Deakin Z; Sherley RB; Pollock CJ; Wanless RJ; Hamer KC
    Mar Environ Res; 2020 Dec; 162():105196. PubMed ID: 33126111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A balanced solution to the cumulative threat of industrialized wind farm development on cinereous vultures (Aegypius monachus) in south-eastern Europe.
    Vasilakis DP; Whitfield DP; Kati V
    PLoS One; 2017; 12(2):e0172685. PubMed ID: 28231316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive Bird Preservation at Wind Farms.
    Gradolewski D; Dziak D; Martynow M; Kaniecki D; Szurlej-Kielanska A; Jaworski A; Kulesza WJ
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future.
    Bailey H; Brookes KL; Thompson PM
    Aquat Biosyst; 2014; 10():8. PubMed ID: 25250175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risks to different populations and age classes of gannets from impacts of offshore wind farms in the southern North Sea.
    Pollock CJ; Lane JV; Buckingham L; Garthe S; Jeavons R; Furness RW; Hamer KC
    Mar Environ Res; 2021 Oct; 171():105457. PubMed ID: 34482114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Economic Feasibility of Floating Offshore Wind Farms Considering Near Future Wind Resources: Case Study of Iberian Coast and Bay of Biscay.
    Castro-Santos L; deCastro M; Costoya X; Filgueira-Vizoso A; Lamas-Galdo I; Ribeiro A; Dias JM; Gómez-Gesteira M
    Int J Environ Res Public Health; 2021 Mar; 18(5):. PubMed ID: 33806488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operational offshore wind farms and associated ship traffic cause profound changes in distribution patterns of Loons (Gavia spp.).
    Mendel B; Schwemmer P; Peschko V; Müller S; Schwemmer H; Mercker M; Garthe S
    J Environ Manage; 2019 Feb; 231():429-438. PubMed ID: 30368153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining radar and direct observation to estimate pelican collision risk at a proposed wind farm on the Cape west coast, South Africa.
    Jenkins AR; Reid T; du Plessis J; Colyn R; Benn G; Millikin R
    PLoS One; 2018; 13(2):e0192515. PubMed ID: 29408877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.