These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 28658645)

  • 1. Bioresponsive interfaces composed of calmodulin and poly(ethylene glycol): Toggling the interfacial film thickness by protein-ligand binding.
    Cinar S; Czeslik C
    Colloids Surf B Biointerfaces; 2017 Oct; 158():9-15. PubMed ID: 28658645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitor and peptide binding to calmodulin characterized by high pressure Fourier transform infrared spectroscopy and Förster resonance energy transfer.
    Cinar S; Czeslik C
    Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):617-623. PubMed ID: 29555454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high pressure study of calmodulin-ligand interactions using small-angle X-ray and elastic incoherent neutron scattering.
    Cinar S; Al-Ayoubi S; Sternemann C; Peters J; Winter R; Czeslik C
    Phys Chem Chem Phys; 2018 Jan; 20(5):3514-3522. PubMed ID: 29336441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building Polyelectrolyte Multilayers with Calmodulin: A Neutron and X-ray Reflectivity Study.
    Cinar S; Möbitz S; Al-Ayoubi S; Seidlhofer BK; Czeslik C
    Langmuir; 2017 Apr; 33(16):3982-3990. PubMed ID: 28379700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+-bound calmodulin forms a compact globular structure on binding four trifluoperazine molecules in solution.
    Matsushima N; Hayashi N; Jinbo Y; Izumi Y
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):211-5. PubMed ID: 10727421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of the calmodulin-trifluoperazine complex in aqueous solution.
    Yamaotsu N; Suga M; Hirono S
    Biopolymers; 2001 Apr; 58(4):410-21. PubMed ID: 11180054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opposing orientations of the anti-psychotic drug trifluoperazine selected by alternate conformations of M144 in calmodulin.
    Feldkamp MD; Gakhar L; Pandey N; Shea MA
    Proteins; 2015 May; 83(5):989-96. PubMed ID: 25694384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The binding of myristoylated N-terminal nonapeptide from neuro-specific protein CAP-23/NAP-22 to calmodulin does not induce the globular structure observed for the calmodulin-nonmyristylated peptide complex.
    Hayashi N; Izumi Y; Titani K; Matsushima N
    Protein Sci; 2000 Oct; 9(10):1905-13. PubMed ID: 11106163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution X-ray scattering reveals a novel structure of calmodulin complexed with a binding domain peptide from the HIV-1 matrix protein p17.
    Izumi Y; Watanabe H; Watanabe N; Aoyama A; Jinbo Y; Hayashi N
    Biochemistry; 2008 Jul; 47(27):7158-66. PubMed ID: 18553937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution X-ray scattering data show structural differences among chimeras of yeast and chicken calmodulin: implications for structure and function.
    Yokouchi T; Nogami H; Izumi Y; Yoshino H; Nakashima K; Yazawa M
    Biochemistry; 2003 Feb; 42(7):2195-201. PubMed ID: 12590609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unique structural changes in calcium-bound calmodulin upon interaction with protein 4.1R FERM domain: novel insights into the calcium-dependent regulation of 4.1R FERM domain binding to membrane proteins by calmodulin.
    Nunomura W; Isozumi N; Nakamura S; Jinbo Y; Ohki S; Kidokoro S; Wakui H; Takakuwa Y
    Cell Biochem Biophys; 2014 May; 69(1):7-19. PubMed ID: 24081810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(acrylic acid)-poly(ethylene glycol) layers on positively charged surface coatings: molecular structure, protein resistance, and application to single protein deposition.
    Seehuber A; Schmidt D; Dahint R
    Langmuir; 2012 Jun; 28(23):8700-10. PubMed ID: 22571171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of calcium ions and peptide ligands on the relative stabilities of the calmodulin dumbbell and compact structures.
    Wyttenbach T; Grabenauer M; Thalassinos K; Scrivens JH; Bowers MT
    J Phys Chem B; 2010 Jan; 114(1):437-47. PubMed ID: 20000583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled activation of protein rotational dynamics using smart hydrogel tethering.
    Beech BM; Xiong Y; Boschek CB; Baird CL; Bigelow DJ; McAteer K; Squier TC
    J Am Chem Soc; 2014 Sep; 136(38):13134-7. PubMed ID: 25190510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing Ca2+-induced conformational changes in porcine calmodulin by H/D exchange and ESI-MS: effect of cations and ionic strength.
    Zhu MM; Rempel DL; Zhao J; Giblin DE; Gross ML
    Biochemistry; 2003 Dec; 42(51):15388-97. PubMed ID: 14690449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of poly(ethylene glycol) on the solution structure of human serum albumin.
    Ragi C; Sedaghat-Herati MR; Ouameur AA; Tajmir-Riahi HA
    Biopolymers; 2005 Aug; 78(5):231-6. PubMed ID: 15832324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-induced changes in calmodulin structural dynamics and thermodynamics.
    Wu G; Gao Z; Dong A; Yu S
    Int J Biol Macromol; 2012 May; 50(4):1011-7. PubMed ID: 22387072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of calmodulin changes the calcineurin regulatory region to a less dynamic conformation.
    Fu C; Zhang J; Zheng Y; Xu H; Yu S
    Int J Biol Macromol; 2015 Aug; 79():235-9. PubMed ID: 25956027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structures of yeast Saccharomyces cerevisiae calmodulin in calcium- and target peptide-bound states reveal similarities and differences to vertebrate calmodulin.
    Ogura K; Kumeta H; Takahasi K; Kobashigawa Y; Yoshida R; Itoh H; Yazawa M; Inagaki F
    Genes Cells; 2012 Mar; 17(3):159-72. PubMed ID: 22280008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface.
    Kim HC; Lee H; Khetan J; Won YY
    Langmuir; 2015 Dec; 31(51):13821-33. PubMed ID: 26633595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.