These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 28658944)
1. Hydraulic retention time and pH affect the performance and microbial communities of passive bioreactors for treatment of acid mine drainage. Aoyagi T; Hamai T; Hori T; Sato Y; Kobayashi M; Sato Y; Inaba T; Ogata A; Habe H; Sakata T AMB Express; 2017 Dec; 7(1):142. PubMed ID: 28658944 [TBL] [Abstract][Full Text] [Related]
2. Optimal start-up conditions for the efficient treatment of acid mine drainage using sulfate-reducing bioreactors based on physicochemical and microbiome analyses. Sato Y; Hamai T; Hori T; Aoyagi T; Inaba T; Hayashi K; Kobayashi M; Sakata T; Habe H J Hazard Mater; 2022 Feb; 423(Pt B):127089. PubMed ID: 34560478 [TBL] [Abstract][Full Text] [Related]
3. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
4. Long-term performance of a UASB reactor treating acid mine drainage: effects of sulfate loading rate, hydraulic retention time, and COD/SO Cunha MP; Ferraz RM; Sancinetti GP; Rodriguez RP Biodegradation; 2019 Feb; 30(1):47-58. PubMed ID: 30406872 [TBL] [Abstract][Full Text] [Related]
5. Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity. Vasquez Y; Escobar MC; Neculita CM; Arbeli Z; Roldan F Chemosphere; 2016 Jun; 153():244-53. PubMed ID: 27016821 [TBL] [Abstract][Full Text] [Related]
6. Optimization of the operation of packed bed bioreactor to improve the sulfate and metal removal from acid mine drainage. Dev S; Roy S; Bhattacharya J J Environ Manage; 2017 Sep; 200():135-144. PubMed ID: 28577451 [TBL] [Abstract][Full Text] [Related]
7. Effect of hydraulic retention time on microbial community in biochemical passive reactors during treatment of acid mine drainage. Vasquez Y; Escobar MC; Saenz JS; Quiceno-Vallejo MF; Neculita CM; Arbeli Z; Roldan F Bioresour Technol; 2018 Jan; 247():624-632. PubMed ID: 28988048 [TBL] [Abstract][Full Text] [Related]
8. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system. Johnson DB; Hallberg KB Sci Total Environ; 2005 Feb; 338(1-2):81-93. PubMed ID: 15680629 [TBL] [Abstract][Full Text] [Related]
9. Desulfosporosinus spp. were the most predominant sulfate-reducing bacteria in pilot- and laboratory-scale passive bioreactors for acid mine drainage treatment. Sato Y; Hamai T; Hori T; Aoyagi T; Inaba T; Kobayashi M; Habe H; Sakata T Appl Microbiol Biotechnol; 2019 Sep; 103(18):7783-7793. PubMed ID: 31388728 [TBL] [Abstract][Full Text] [Related]
10. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage. Burns AS; Pugh CW; Segid YT; Behum PT; Lefticariu L; Bender KS Biodegradation; 2012 Jun; 23(3):415-29. PubMed ID: 22083105 [TBL] [Abstract][Full Text] [Related]
11. Elemental sulfur-driven sulfidogenic process under highly acidic conditions for sulfate-rich acid mine drainage treatment: Performance and microbial community analysis. Sun R; Zhang L; Wang X; Ou C; Lin N; Xu S; Qiu YY; Jiang F Water Res; 2020 Oct; 185():116230. PubMed ID: 32784032 [TBL] [Abstract][Full Text] [Related]
12. Removal of sulfate and heavy metals by sulfate-reducing bacteria in an expanded granular sludge bed reactor. Liu Z; Li L; Li Z; Tian X Environ Technol; 2018 Jul; 39(14):1814-1822. PubMed ID: 28592226 [TBL] [Abstract][Full Text] [Related]
13. Toxicity and metal speciation in acid mine drainage treated by passive bioreactors. Neculita CM; Vigneault B; Zagury GJ Environ Toxicol Chem; 2008 Aug; 27(8):1659-67. PubMed ID: 18290688 [TBL] [Abstract][Full Text] [Related]
14. Hydraulic retention time affects bacterial community structure in an As-rich acid mine drainage (AMD) biotreatment process. Fernandez-Rojo L; Casiot C; Tardy V; Laroche E; Le Pape P; Morin G; Joulian C; Battaglia-Brunet F; Braungardt C; Desoeuvre A; Delpoux S; Boisson J; Héry M Appl Microbiol Biotechnol; 2018 Nov; 102(22):9803-9813. PubMed ID: 30155752 [TBL] [Abstract][Full Text] [Related]
15. Sequential hydrotalcite precipitation and biological sulfate reduction for acid mine drainage treatment. Yan S; Cheng KY; Morris C; Douglas G; Ginige MP; Zheng G; Zhou L; Kaksonen AH Chemosphere; 2020 Aug; 252():126570. PubMed ID: 32443266 [TBL] [Abstract][Full Text] [Related]
16. The hydraulic retention time influences the abundance of Enterobacter, Clostridium and Lactobacillus during the hydrogen production from food waste. Santiago SG; Trably E; Latrille E; Buitrón G; Moreno-Andrade I Lett Appl Microbiol; 2019 Sep; 69(3):138-147. PubMed ID: 31219171 [TBL] [Abstract][Full Text] [Related]
17. Salinity and low temperature effects on the performance of column biochemical reactors for the treatment of acidic and neutral mine drainage. Ben Ali HE; Neculita CM; Molson JW; Maqsoud A; Zagury GJ Chemosphere; 2020 Mar; 243():125303. PubMed ID: 31760288 [TBL] [Abstract][Full Text] [Related]
18. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor. Bekmezci OK; Ucar D; Kaksonen AH; Sahinkaya E J Hazard Mater; 2011 May; 189(3):670-6. PubMed ID: 21320747 [TBL] [Abstract][Full Text] [Related]
19. Simulated acid mine drainage treatment in iron oxidizing ceramic membrane bioreactor with subsequent co-precipitation of iron and arsenic. Demir EK; Yaman BN; Çelik PA; Puhakka JA; Sahinkaya E Water Res; 2021 Aug; 201():117297. PubMed ID: 34118649 [TBL] [Abstract][Full Text] [Related]
20. Design and Application of a Low pH Upflow Biofilm Sulfidogenic Bioreactor for Recovering Transition Metals From Synthetic Waste Water at a Brazilian Copper Mine. Santos AL; Johnson DB Front Microbiol; 2018; 9():2051. PubMed ID: 30214439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]