BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28658990)

  • 1. Optimisation of peptides that actively cross the tympanic membrane by random amino acid extension: a phage display study.
    Kurabi A; Schaerer D; Chang L; Pak K; Ryan AF
    J Drug Target; 2018 Feb; 26(2):127-134. PubMed ID: 28658990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptides actively transported across the tympanic membrane: Functional and structural properties.
    Kurabi A; Beasley KA; Chang L; McCann J; Pak K; Ryan AF
    PLoS One; 2017; 12(2):e0172158. PubMed ID: 28234923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A transcytotic transport mechanism across the tympanic membrane.
    Kurabi A; Pak K; Chavez E; Doan J; Ryan AF
    Sci Rep; 2022 Jan; 12(1):984. PubMed ID: 35046419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of a Biological Mechanism of Active Transport through the Tympanic Membrane to the Middle Ear.
    Kurabi A; Pak KK; Bernhardt M; Baird A; Ryan AF
    Sci Rep; 2016 Mar; 6():22663. PubMed ID: 26946957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological changes in the tympanic membrane associated with Haemophilus influenzae-induced acute otitis media in the chinchilla.
    Guan X; Jiang S; Seale TW; Hitt BM; Gan RZ
    Int J Pediatr Otorhinolaryngol; 2015 Sep; 79(9):1462-71. PubMed ID: 26183006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active Transport of Peptides Across the Intact Human Tympanic Membrane.
    Kurabi A; Schaerer D; Noack V; Bernhardt M; Pak K; Alexander T; Husseman J; Nguyen Q; Harris JP; Ryan AF
    Sci Rep; 2018 Aug; 8(1):11815. PubMed ID: 30087425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The tympanic membrane and middle ear mucosa during non-typeable Haemophilus influenzae and Haemophilus influenzae type b acute otitis media: a study in the rat.
    Magnuson K; Hermansson A; Melhus A; Hellström S
    Acta Otolaryngol; 1997 May; 117(3):396-405. PubMed ID: 9199526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of surfactant Protein-A in the Haemophilus influenzae-induced otitis media in a rat model.
    Yu GH; Kim HB; Ko SH; Kim YW; Lim YS; Park SW; Cho CG; Park JH
    Int J Pediatr Otorhinolaryngol; 2018 Sep; 112():61-66. PubMed ID: 30055742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Panel 1: Biotechnology, biomedical engineering and new models of otitis media.
    Gisselsson-Solén M; Tähtinen PA; Ryan AF; Mulay A; Kariya S; Schilder AGM; Valdez TA; Brown S; Nolan RM; Hermansson A; van Ingen G; Marom T
    Int J Pediatr Otorhinolaryngol; 2020 Mar; 130 Suppl 1(Suppl 1):109833. PubMed ID: 31901291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tympanic membrane changes in experimental acute otitis media and myringotomy.
    Alzbutiene G; Hermansson A; Cayè-Thomasen P; Kinduris V
    Medicina (Kaunas); 2008; 44(4):313-21. PubMed ID: 18469509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of myringosclerosis during acute otitis media caused by Streptococcus pneumoniae and non-typeable Haemophilus influenzae: a clinical otomicroscopical study using the rat model.
    Raustyte G; Hermansson A
    Medicina (Kaunas); 2005; 41(8):661-7. PubMed ID: 16160414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of group 3 innate lymphoid cells during experimental otitis media in a rat model.
    Cho CG; Gong SH; Kim HB; Song JJ; Park JH; Lim YS; Park SW
    Int J Pediatr Otorhinolaryngol; 2016 Sep; 88():146-52. PubMed ID: 27497403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Jun N-terminal protein kinase enhances middle ear mucosal proliferation during bacterial otitis media.
    Furukawa M; Ebmeyer J; Pak K; Austin DA; Melhus A; Webster NJ; Ryan AF
    Infect Immun; 2007 May; 75(5):2562-71. PubMed ID: 17325051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nontypeable and encapsulated Haemophilus influenzae yield different clinical courses of experimental otitis media.
    Melhus A; Hermansson A; Prellner K
    Acta Otolaryngol; 1994 May; 114(3):289-94. PubMed ID: 8073862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Otitis media associated polymorphisms in the hemin receptor HemR of nontypeable Haemophilus influenzae.
    LaCross NC; Marrs CF; Gilsdorf JR
    Infect Genet Evol; 2014 Aug; 26():47-57. PubMed ID: 24820341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bacterial vaccine polypeptide protective against nontypable Haemophilus influenzae.
    Whitby PW; Morton DJ; Mussa HJ; Mirea L; Stull TL
    Vaccine; 2020 Mar; 38(14):2960-2970. PubMed ID: 32111525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced pulmonary absorption of a macromolecule through coupling to a sequence-specific phage display-derived peptide.
    Morris CJ; Smith MW; Griffiths PC; McKeown NB; Gumbleton M
    J Control Release; 2011 Apr; 151(1):83-94. PubMed ID: 21182881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium deposition and expression of bone modelling markers in the tympanic membrane following acute otitis media.
    Raustyte G; Cayé-Thomasen P; Hermansson A; Andersen H; Thomsen J
    Int J Pediatr Otorhinolaryngol; 2006 Mar; 70(3):529-39. PubMed ID: 16159670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptides selected for binding to a virulent strain of Haemophilus influenzae by phage display are bactericidal.
    Bishop-Hurley SL; Schmidt FJ; Erwin AL; Smith AL
    Antimicrob Agents Chemother; 2005 Jul; 49(7):2972-8. PubMed ID: 15980377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in mucosal goblet cell density in acute otitis media caused by non-typeable Haemophilus influenzae.
    Cayé-Thomasen P; Hermansson A; Tos M; Prellner K
    Acta Otolaryngol; 1998 Mar; 118(2):211-5. PubMed ID: 9583789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.