These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 28659156)
1. The Arm Movement Detection (AMD) test: a fast robotic test of proprioceptive acuity in the arm. Mrotek LA; Bengtson M; Stoeckmann T; Botzer L; Ghez CP; McGuire J; Scheidt RA J Neuroeng Rehabil; 2017 Jun; 14(1):64. PubMed ID: 28659156 [TBL] [Abstract][Full Text] [Related]
2. A robotic test of proprioception within the hemiparetic arm post-stroke. Simo L; Botzer L; Ghez C; Scheidt RA J Neuroeng Rehabil; 2014 Apr; 11():77. PubMed ID: 24885197 [TBL] [Abstract][Full Text] [Related]
3. The arm motion detection (AMD) test. Bengtson MC; Mrotek LA; Stoeckmann T; Ghez C; Scheidt RA Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5349-52. PubMed ID: 25571202 [TBL] [Abstract][Full Text] [Related]
4. Effects of a robot-aided somatosensory training on proprioception and motor function in stroke survivors. Yeh IL; Holst-Wolf J; Elangovan N; Cuppone AV; Lakshminarayan K; Cappello L; Masia L; Konczak J J Neuroeng Rehabil; 2021 May; 18(1):77. PubMed ID: 33971912 [TBL] [Abstract][Full Text] [Related]
5. Proprioceptive assessment in clinical settings: Evaluation of joint position sense in upper limb post-stroke using a robotic manipulator. Contu S; Hussain A; Kager S; Budhota A; Deshmukh VA; Kuah CWK; Yam LHL; Xiang L; Chua KSG; Masia L; Campolo D PLoS One; 2017; 12(11):e0183257. PubMed ID: 29161264 [TBL] [Abstract][Full Text] [Related]
6. Reliable and valid robot-assisted assessments of hand proprioceptive, motor and sensorimotor impairments after stroke. Zbytniewska M; Kanzler CM; Jordan L; Salzmann C; Liepert J; Lambercy O; Gassert R J Neuroeng Rehabil; 2021 Jul; 18(1):115. PubMed ID: 34271954 [TBL] [Abstract][Full Text] [Related]
7. A composite robotic-based measure of upper limb proprioception. Kenzie JM; Semrau JA; Hill MD; Scott SH; Dukelow SP J Neuroeng Rehabil; 2017 Nov; 14(1):114. PubMed ID: 29132388 [TBL] [Abstract][Full Text] [Related]
8. The independence of impairments in proprioception and visuomotor adaptation after stroke. Moore RT; Piitz MA; Singh N; Dukelow SP; Cluff T J Neuroeng Rehabil; 2024 May; 21(1):81. PubMed ID: 38762552 [TBL] [Abstract][Full Text] [Related]
9. Vision does not always help stroke survivors compensate for impaired limb position sense. Herter TM; Scott SH; Dukelow SP J Neuroeng Rehabil; 2019 Oct; 16(1):129. PubMed ID: 31666135 [TBL] [Abstract][Full Text] [Related]
10. Robotic tests for position sense and movement discrimination in the upper limb reveal that they each are highly reproducible but not correlated in healthy individuals. Lowrey CR; Blazevski B; Marnet JL; Bretzke H; Dukelow SP; Scott SH J Neuroeng Rehabil; 2020 Jul; 17(1):103. PubMed ID: 32711540 [TBL] [Abstract][Full Text] [Related]
11. Reliability, validity, and clinical feasibility of a rapid and objective assessment of post-stroke deficits in hand proprioception. Rinderknecht MD; Lambercy O; Raible V; Büsching I; Sehle A; Liepert J; Gassert R J Neuroeng Rehabil; 2018 Jun; 15(1):47. PubMed ID: 29880003 [TBL] [Abstract][Full Text] [Related]
12. Robotic identification of kinesthetic deficits after stroke. Semrau JA; Herter TM; Scott SH; Dukelow SP Stroke; 2013 Dec; 44(12):3414-21. PubMed ID: 24193800 [TBL] [Abstract][Full Text] [Related]
13. A quantitative and standardized robotic method for the evaluation of arm proprioception after stroke. Simo LS; Ghez C; Botzer L; Scheidt RA Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8227-30. PubMed ID: 22256252 [TBL] [Abstract][Full Text] [Related]
14. Inter-rater reliability of kinesthetic measurements with the KINARM robotic exoskeleton. Semrau JA; Herter TM; Scott SH; Dukelow SP J Neuroeng Rehabil; 2017 May; 14(1):42. PubMed ID: 28532512 [TBL] [Abstract][Full Text] [Related]
15. A robot-assisted sensorimotor training program can improve proprioception and motor function in stroke survivors. Elangovan N; Yeh IL; Holst-Wolf J; Konczak J IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():660-664. PubMed ID: 31374706 [TBL] [Abstract][Full Text] [Related]
16. Quantification of upper limb position sense using an exoskeleton and a virtual reality display. Deblock-Bellamy A; Batcho CS; Mercier C; Blanchette AK J Neuroeng Rehabil; 2018 Mar; 15(1):24. PubMed ID: 29548326 [TBL] [Abstract][Full Text] [Related]
17. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke. Chang JJ; Tung WL; Wu WL; Huang MH; Su FC Arch Phys Med Rehabil; 2007 Oct; 88(10):1332-8. PubMed ID: 17908578 [TBL] [Abstract][Full Text] [Related]
18. Movement kinematics and proprioception in post-stroke spasticity: assessment using the Kinarm robotic exoskeleton. Mochizuki G; Centen A; Resnick M; Lowrey C; Dukelow SP; Scott SH J Neuroeng Rehabil; 2019 Nov; 16(1):146. PubMed ID: 31753011 [TBL] [Abstract][Full Text] [Related]
19. Reach adaptation and final position control amid environmental uncertainty after stroke. Scheidt RA; Stoeckmann T J Neurophysiol; 2007 Apr; 97(4):2824-36. PubMed ID: 17267755 [TBL] [Abstract][Full Text] [Related]
20. Robot-based assessment of motor and proprioceptive function identifies biomarkers for prediction of functional independence measures. Mostafavi SM; Mousavi P; Dukelow SP; Scott SH J Neuroeng Rehabil; 2015 Nov; 12():105. PubMed ID: 26611144 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]