These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 28659338)
1. High-throughput profiling of signaling networks identifies mechanism-based combination therapy to eliminate microenvironmental resistance in acute myeloid leukemia. Zeng Z; Liu W; Tsao T; Qiu Y; Zhao Y; Samudio I; Sarbassov DD; Kornblau SM; Baggerly KA; Kantarjian HM; Konopleva M; Andreeff M Haematologica; 2017 Sep; 102(9):1537-1548. PubMed ID: 28659338 [TBL] [Abstract][Full Text] [Related]
2. New strategies for relapsed acute myeloid leukemia: fertile ground for translational research. Dinner SN; Giles FJ; Altman JK Curr Opin Hematol; 2014 Mar; 21(2):79-86. PubMed ID: 24419335 [TBL] [Abstract][Full Text] [Related]
3. Bone marrow stroma-induced resistance of chronic lymphocytic leukemia cells to arsenic trioxide involves Mcl-1 upregulation and is overcome by inhibiting the PI3Kδ or PKCβ signaling pathways. Amigo-Jiménez I; Bailón E; Aguilera-Montilla N; Terol MJ; García-Marco JA; García-Pardo A Oncotarget; 2015 Dec; 6(42):44832-48. PubMed ID: 26540567 [TBL] [Abstract][Full Text] [Related]
4. Atg7 suppression enhances chemotherapeutic agent sensitivity and overcomes stroma-mediated chemoresistance in acute myeloid leukemia. Piya S; Kornblau SM; Ruvolo VR; Mu H; Ruvolo PP; McQueen T; Davis RE; Hail N; Kantarjian H; Andreeff M; Borthakur G Blood; 2016 Sep; 128(9):1260-9. PubMed ID: 27268264 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of mTOR kinase as a therapeutic target for acute myeloid leukemia. Tabe Y; Tafuri A; Sekihara K; Yang H; Konopleva M Expert Opin Ther Targets; 2017 Jul; 21(7):705-714. PubMed ID: 28537457 [TBL] [Abstract][Full Text] [Related]
6. c-Myc plays part in drug resistance mediated by bone marrow stromal cells in acute myeloid leukemia. Xia B; Tian C; Guo S; Zhang L; Zhao D; Qu F; Zhao W; Wang Y; Wu X; Da W; Wei S; Zhang Y Leuk Res; 2015 Jan; 39(1):92-9. PubMed ID: 25443862 [TBL] [Abstract][Full Text] [Related]
7. Anti-apoptotic ARC protein confers chemoresistance by controlling leukemia-microenvironment interactions through a NFκB/IL1β signaling network. Carter BZ; Mak PY; Chen Y; Mak DH; Mu H; Jacamo R; Ruvolo V; Arold ST; Ladbury JE; Burks JK; Kornblau S; Andreeff M Oncotarget; 2016 Apr; 7(15):20054-67. PubMed ID: 26956049 [TBL] [Abstract][Full Text] [Related]
8. Bone marrow stromal cells protect acute myeloid leukemia cells from anti-CD44 therapy partly through regulating PI3K/Akt-p27(Kip1) axis. Chen P; Huang H; Wu J; Lu R; Wu Y; Jiang X; Yuan Q; Chen Y Mol Carcinog; 2015 Dec; 54(12):1678-85. PubMed ID: 25408361 [TBL] [Abstract][Full Text] [Related]
9. Targeting autophagy to overcome chemoresistance in acute myleogenous leukemia. Piya S; Andreeff M; Borthakur G Autophagy; 2017 Jan; 13(1):214-215. PubMed ID: 27797294 [TBL] [Abstract][Full Text] [Related]
10. Stromal CYR61 Confers Resistance to Mitoxantrone via Spleen Tyrosine Kinase Activation in Human Acute Myeloid Leukaemia. Long X; Yu Y; Perlaky L; Man TK; Redell MS Br J Haematol; 2015 Sep; 170(5):704-18. PubMed ID: 25974135 [TBL] [Abstract][Full Text] [Related]
11. Superior anti-tumor activity of the MDM2 antagonist idasanutlin and the Bcl-2 inhibitor venetoclax in p53 wild-type acute myeloid leukemia models. Lehmann C; Friess T; Birzele F; Kiialainen A; Dangl M J Hematol Oncol; 2016 Jun; 9(1):50. PubMed ID: 27353420 [TBL] [Abstract][Full Text] [Related]
12. Cholesterol regulates VEGFR-1 (FLT-1) expression and signaling in acute leukemia cells. Casalou C; Costa A; Carvalho T; Gomes AL; Zhu Z; Wu Y; Dias S Mol Cancer Res; 2011 Feb; 9(2):215-24. PubMed ID: 21209384 [TBL] [Abstract][Full Text] [Related]
13. Selective Inhibitors of Histone Deacetylases 1 and 2 Synergize with Azacitidine in Acute Myeloid Leukemia. Min C; Moore N; Shearstone JR; Quayle SN; Huang P; van Duzer JH; Jarpe MB; Jones SS; Yang M PLoS One; 2017; 12(1):e0169128. PubMed ID: 28060870 [TBL] [Abstract][Full Text] [Related]
14. Combination screening in vitro identifies synergistically acting KP372-1 and cytarabine against acute myeloid leukemia. Österroos A; Kashif M; Haglund C; Blom K; Höglund M; Andersson C; Gustafsson MG; Eriksson A; Larsson R Biochem Pharmacol; 2016 Oct; 118():40-49. PubMed ID: 27565890 [TBL] [Abstract][Full Text] [Related]
15. Acute myeloid leukemia: Therapy resistance and a potential role for tetraspanin membrane scaffolds. Floren M; Gillette JM Int J Biochem Cell Biol; 2021 Aug; 137():106029. PubMed ID: 34174403 [TBL] [Abstract][Full Text] [Related]
16. Rational Design of a Parthenolide-based Drug Regimen That Selectively Eradicates Acute Myelogenous Leukemia Stem Cells. Pei S; Minhajuddin M; D'Alessandro A; Nemkov T; Stevens BM; Adane B; Khan N; Hagen FK; Yadav VK; De S; Ashton JM; Hansen KC; Gutman JA; Pollyea DA; Crooks PA; Smith C; Jordan CT J Biol Chem; 2016 Oct; 291(42):21984-22000. PubMed ID: 27573247 [TBL] [Abstract][Full Text] [Related]
17. New agents for the treatment of acute myeloid leukemia. Tallman MS Best Pract Res Clin Haematol; 2006; 19(2):311-20. PubMed ID: 16516128 [TBL] [Abstract][Full Text] [Related]
18. New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Hales EC; Taub JW; Matherly LH Cell Signal; 2014 Jan; 26(1):149-61. PubMed ID: 24140475 [TBL] [Abstract][Full Text] [Related]
19. A stress-responsive enhancer induces dynamic drug resistance in acute myeloid leukemia. Williams MS; Amaral FM; Simeoni F; Somervaille TC J Clin Invest; 2020 Mar; 130(3):1217-1232. PubMed ID: 31770110 [TBL] [Abstract][Full Text] [Related]
20. The short form of RON is expressed in acute myeloid leukemia and sensitizes leukemic cells to cMET inhibitors. Fialin C; Larrue C; Vergez F; Sarry JE; Bertoli S; Mansat-De Mas V; Demur C; Delabesse E; Payrastre B; Manenti S; Roche S; Récher C Leukemia; 2013 Feb; 27(2):325-35. PubMed ID: 22902361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]