These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 28659410)

  • 1. Addressing current challenges in cancer immunotherapy with mathematical and computational modelling.
    Konstorum A; Vella AT; Adler AJ; Laubenbacher RC
    J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28659410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Top 10 Challenges in Cancer Immunotherapy.
    Hegde PS; Chen DS
    Immunity; 2020 Jan; 52(1):17-35. PubMed ID: 31940268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumour suppression by immune system through stochastic oscillations.
    Caravagna G; d'Onofrio A; Milazzo P; Barbuti R
    J Theor Biol; 2010 Aug; 265(3):336-45. PubMed ID: 20580640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mathematical prognosis model for pancreatic cancer patients receiving immunotherapy.
    Li X; Xu JX
    J Theor Biol; 2016 Oct; 406():42-51. PubMed ID: 27338302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems oncology: towards patient-specific treatment regimes informed by multiscale mathematical modelling.
    Powathil GG; Swat M; Chaplain MA
    Semin Cancer Biol; 2015 Feb; 30():13-20. PubMed ID: 24607841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the optimal therapeutic protocols in cancer immunotherapy.
    Cappuccio A; Castiglione F; Piccoli B
    Math Biosci; 2007 Sep; 209(1):1-13. PubMed ID: 17416392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of biomarkers to predict response to immunotherapy in cancer: Volume I - pre-analytical and analytical validation.
    Masucci GV; Cesano A; Hawtin R; Janetzki S; Zhang J; Kirsch I; Dobbin KK; Alvarez J; Robbins PB; Selvan SR; Streicher HZ; Butterfield LH; Thurin M
    J Immunother Cancer; 2016; 4():76. PubMed ID: 27895917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical Modeling of Cancer Immunotherapy and Its Synergy with Radiotherapy.
    Serre R; Benzekry S; Padovani L; Meille C; André N; Ciccolini J; Barlesi F; Muracciole X; Barbolosi D
    Cancer Res; 2016 Sep; 76(17):4931-40. PubMed ID: 27302167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the global dynamics of a model for tumor immunotherapy.
    Kirschner D; Tsygvintsev A
    Math Biosci Eng; 2009 Jul; 6(3):573-83. PubMed ID: 19566127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutant MHC class II epitopes drive therapeutic immune responses to cancer.
    Kreiter S; Vormehr M; van de Roemer N; Diken M; Löwer M; Diekmann J; Boegel S; Schrörs B; Vascotto F; Castle JC; Tadmor AD; Schoenberger SP; Huber C; Türeci Ö; Sahin U
    Nature; 2015 Apr; 520(7549):692-6. PubMed ID: 25901682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neoepitopes as cancer immunotherapy targets: key challenges and opportunities.
    Brennick CA; George MM; Corwin WL; Srivastava PK; Ebrahimi-Nik H
    Immunotherapy; 2017 Mar; 9(4):361-371. PubMed ID: 28303769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunoengineering with biomaterials for enhanced cancer immunotherapy.
    Xie YQ; Wei L; Tang L
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 Jul; 10(4):e1506. PubMed ID: 29333729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunomodulating and Immunoresistance Properties of Cancer-Initiating Cells: Implications for the Clinical Success of Immunotherapy.
    Maccalli C; Parmiani G; Ferrone S
    Immunol Invest; 2017 Apr; 46(3):221-238. PubMed ID: 28287848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting cancer-related inflammation in the era of immunotherapy.
    Nakamura K; Smyth MJ
    Immunol Cell Biol; 2017 Apr; 95(4):325-332. PubMed ID: 27999432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of immunotherapy on the response of TICLs to solid tumour invasion.
    Mambili-Mamboundou H; Sibanda P; Malinzi J
    Math Biosci; 2014 Mar; 249():52-9. PubMed ID: 24480736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational modelling of modern cancer immunotherapy.
    Valentinuzzi D; Jeraj R
    Phys Med Biol; 2020 Dec; 65(24):24TR01. PubMed ID: 33091898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Bacillus Calmette-Guérin (BCG) immunotherapy for bladder cancer by adding interleukin 2 (IL-2): a mathematical model.
    Bunimovich-Mendrazitsky S; Halachmi S; Kronik N
    Math Med Biol; 2016 Jun; 33(2):159-88. PubMed ID: 25888550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mathematics of cancer: integrating quantitative models.
    Altrock PM; Liu LL; Michor F
    Nat Rev Cancer; 2015 Dec; 15(12):730-45. PubMed ID: 26597528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer-induced immunosuppression can enable effectiveness of immunotherapy through bistability generation: A mathematical and computational examination.
    Garcia V; Bonhoeffer S; Fu F
    J Theor Biol; 2020 May; 492():110185. PubMed ID: 32035826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of a cancer dormancy model and control of immuno-therapy.
    Sheller B; D'Alessandro D
    Math Biosci Eng; 2015 Oct; 12(5):1037-53. PubMed ID: 26280178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.