BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

545 related articles for article (PubMed ID: 28659464)

  • 21. Glutamate receptor plasticity and activity-regulated cytoskeletal associated protein regulation in the phrenic motor nucleus may mediate spontaneous recovery of the hemidiaphragm following chronic cervical spinal cord injury.
    Alilain WJ; Goshgarian HG
    Exp Neurol; 2008 Aug; 212(2):348-57. PubMed ID: 18534577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Respiratory neuron subpopulations and pathways potentially involved in the reactivation of phrenic motoneurons after C2 hemisection.
    Boulenguez P; Gauthier P; Kastner A
    Brain Res; 2007 May; 1148():96-104. PubMed ID: 17379194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diaphragm electromyographic activity following unilateral midcervical contusion injury in rats.
    Rana S; Sieck GC; Mantilla CB
    J Neurophysiol; 2017 Feb; 117(2):545-555. PubMed ID: 27832610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spontaneous respiratory plasticity following unilateral high cervical spinal cord injury in behaving rats.
    Bezdudnaya T; Hormigo KM; Marchenko V; Lane MA
    Exp Neurol; 2018 Jul; 305():56-65. PubMed ID: 29596845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Serotonergic innervation of respiratory motor nuclei after cervical spinal injury: Impact of intermittent hypoxia.
    Ciesla MC; Seven YB; Allen LL; Smith KN; Asa ZA; Simon AK; Holland AE; Santiago JV; Stefan K; Ross A; Gonzalez-Rothi EJ; Mitchell GS
    Exp Neurol; 2021 Apr; 338():113609. PubMed ID: 33460645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AAV2-BDNF promotes respiratory axon plasticity and recovery of diaphragm function following spinal cord injury.
    Charsar BA; Brinton MA; Locke K; Chen AY; Ghosh B; Urban MW; Komaravolu S; Krishnamurthy K; Smit R; Pasinelli P; Wright MC; Smith GM; Lepore AC
    FASEB J; 2019 Dec; 33(12):13775-13793. PubMed ID: 31577916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spinal NMDA receptor activation is necessary for de novo, but not the maintenance of, A2a receptor-mediated phrenic motor facilitation.
    Golder FJ
    J Appl Physiol (1985); 2009 Jul; 107(1):217-23. PubMed ID: 19407255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of the serotonin synthesis inhibitor p-CPA on the expression of the crossed phrenic phenomenon 4 h following C2 spinal cord hemisection.
    Hadley SD; Walker PD; Goshgarian HG
    Exp Neurol; 1999 Dec; 160(2):479-88. PubMed ID: 10619565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Excitatory amino acid-mediated transmission of inspiratory drive to phrenic motoneurons.
    Liu G; Feldman JL; Smith JC
    J Neurophysiol; 1990 Aug; 64(2):423-36. PubMed ID: 1976765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ampakines stimulate phrenic motor output after cervical spinal cord injury.
    Wollman LB; Streeter KA; Fusco AF; Gonzalez-Rothi EJ; Sandhu MS; Greer JJ; Fuller DD
    Exp Neurol; 2020 Dec; 334():113465. PubMed ID: 32949571
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic changes in phrenic motor output following high cervical hemisection in the decerebrate rat.
    Ghali MG; Marchenko V
    Exp Neurol; 2015 Sep; 271():379-89. PubMed ID: 26056711
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localized delivery of brain-derived neurotrophic factor-expressing mesenchymal stem cells enhances functional recovery following cervical spinal cord injury.
    Gransee HM; Zhan WZ; Sieck GC; Mantilla CB
    J Neurotrauma; 2015 Feb; 32(3):185-93. PubMed ID: 25093762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synaptic pathways to phrenic motoneurons are enhanced by chronic intermittent hypoxia after cervical spinal cord injury.
    Fuller DD; Johnson SM; Olson EB; Mitchell GS
    J Neurosci; 2003 Apr; 23(7):2993-3000. PubMed ID: 12684486
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High cervical lateral spinal cord injury results in long-term ipsilateral hemidiaphragm paralysis.
    Vinit S; Gauthier P; Stamegna JC; Kastner A
    J Neurotrauma; 2006 Jul; 23(7):1137-46. PubMed ID: 16866626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-term facilitation of ipsilateral but not contralateral phrenic output after cervical spinal cord hemisection.
    Doperalski NJ; Fuller DD
    Exp Neurol; 2006 Jul; 200(1):74-81. PubMed ID: 16647702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diaphragm and Intercostal Muscle Activity after Mid-Cervical Spinal Cord Contusion in the Rat.
    Wen MH; Lee KZ
    J Neurotrauma; 2018 Feb; 35(3):533-547. PubMed ID: 28844175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disproportionate loss of excitatory inputs to smaller phrenic motor neurons following cervical spinal hemisection.
    Rana S; Zhan WZ; Mantilla CB; Sieck GC
    J Physiol; 2020 Oct; 598(20):4693-4711. PubMed ID: 32735344
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphological plasticity induced in the phrenic nucleus following cervical cold block of descending respiratory drive.
    Castro-Moure F; Goshgarian HG
    Exp Neurol; 1997 Oct; 147(2):299-310. PubMed ID: 9344555
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cervical spinal 5-HT
    Tadjalli A; Mitchell GS
    J Appl Physiol (1985); 2019 Aug; 127(2):432-443. PubMed ID: 31219768
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intraspinal microstimulation and diaphragm activation after cervical spinal cord injury.
    Mercier LM; Gonzalez-Rothi EJ; Streeter KA; Posgai SS; Poirier AS; Fuller DD; Reier PJ; Baekey DM
    J Neurophysiol; 2017 Feb; 117(2):767-776. PubMed ID: 27881723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.