These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 28659525)
1. Comparative evaluation of conventional and microwave hydrothermal carbonization of human biowaste for value recovery. Afolabi OOD; Sohail M Water Sci Technol; 2017 Jun; 75(12):2852-2863. PubMed ID: 28659525 [TBL] [Abstract][Full Text] [Related]
2. Characterization of Solid Fuel Chars recovered from Microwave Hydrothermal Carbonization of Human Biowaste. Afolabi OOD; Sohail M; Thomas CLP Energy (Oxf); 2017; 134():74-89. PubMed ID: 33343060 [TBL] [Abstract][Full Text] [Related]
3. Uncovering the transition between hydrothermal carbonization and liquefaction via secondary char extraction: A case study using food waste. Pecchi M; Baratieri M; Maag AR; Goldfarb JL Waste Manag; 2023 Aug; 168():281-289. PubMed ID: 37329834 [TBL] [Abstract][Full Text] [Related]
4. Optimization and characterization of hydrochar produced from microwave hydrothermal carbonization of fish waste. Kannan S; Gariepy Y; Raghavan GSV Waste Manag; 2017 Jul; 65():159-168. PubMed ID: 28412097 [TBL] [Abstract][Full Text] [Related]
5. Hydrothermal carbonization of waste from leather processing and feasibility of produced hydrochar as an alternative solid fuel. Lee J; Hong J; Jang D; Park KY J Environ Manage; 2019 Oct; 247():115-120. PubMed ID: 31234046 [TBL] [Abstract][Full Text] [Related]
6. Comparative Investigation of the Physicochemical Properties of Chars Produced by Hydrothermal Carbonization, Pyrolysis, and Microwave-Induced Pyrolysis of Food Waste. Khan MA; Hameed BH; Siddiqui MR; Alothman ZA; Alsohaimi IH Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215734 [TBL] [Abstract][Full Text] [Related]
7. Hydrothermal carbonization and torrefaction of grape pomace: a comparative evaluation. Pala M; Kantarli IC; Buyukisik HB; Yanik J Bioresour Technol; 2014 Jun; 161():255-62. PubMed ID: 24709539 [TBL] [Abstract][Full Text] [Related]
8. Effects of hydrolysis and carbonization reactions on hydrochar production. Fakkaew K; Koottatep T; Polprasert C Bioresour Technol; 2015 Sep; 192():328-34. PubMed ID: 26051497 [TBL] [Abstract][Full Text] [Related]
9. Conversion of heavy metal-containing biowaste from phytoremediation site to value-added solid fuel through hydrothermal carbonization. Lee J; Park KY Environ Pollut; 2021 Jan; 269():116127. PubMed ID: 33279266 [TBL] [Abstract][Full Text] [Related]
10. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques. Lu X; Jordan B; Berge ND Waste Manag; 2012 Jul; 32(7):1353-65. PubMed ID: 22516099 [TBL] [Abstract][Full Text] [Related]
11. Urban biowaste for solid fuel production: waste suitability assessment and experimental carbonization in Dar es Salaam, Tanzania. Lohri CR; Faraji A; Ephata E; Rajabu HM; Zurbrügg C Waste Manag Res; 2015 Feb; 33(2):175-82. PubMed ID: 25649406 [TBL] [Abstract][Full Text] [Related]
12. The influence of manure feedstock, slow pyrolysis, and hydrothermal temperature on manure thermochemical and combustion properties. Zhou S; Liang H; Han L; Huang G; Yang Z Waste Manag; 2019 Apr; 88():85-95. PubMed ID: 31079653 [TBL] [Abstract][Full Text] [Related]
13. Characterization of char derived from various types of solid wastes from the standpoint of fuel recovery and pretreatment before landfilling. Hwang IH; Matsuto T; Tanaka N; Sasaki Y; Tanaami K Waste Manag; 2007; 27(9):1155-66. PubMed ID: 16920347 [TBL] [Abstract][Full Text] [Related]
14. Hydrothermal carbonization of off-specification compost: a byproduct of the organic municipal solid waste treatment. Basso D; Weiss-Hortala E; Patuzzi F; Castello D; Baratieri M; Fiori L Bioresour Technol; 2015 Apr; 182():217-224. PubMed ID: 25700341 [TBL] [Abstract][Full Text] [Related]
15. Effect of solvent and feedstock selection on primary and secondary chars produced via hydrothermal carbonization of food wastes. Pecchi M; Baratieri M; Goldfarb JL; Maag AR Bioresour Technol; 2022 Mar; 348():126799. PubMed ID: 35122980 [TBL] [Abstract][Full Text] [Related]
16. Hydrothermal carbonization of biogas digestate: Effect of digestate origin and process conditions. Cao Z; Jung D; Olszewski MP; Arauzo PJ; Kruse A Waste Manag; 2019 Dec; 100():138-150. PubMed ID: 31536924 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the energetic and environmental potential of the hydrothermal carbonization of biowaste: Modeling of the entire process chain. Stobernack N; Mayer F; Malek C; Bhandari R Bioresour Technol; 2020 Dec; 318():124038. PubMed ID: 32889125 [TBL] [Abstract][Full Text] [Related]
18. On-line analysis of the correlation between gasification characteristics and microstructure of woody biowaste after hydrothermal carbonization. Zeng M; Ge Z; Ma Y; Zha Z; Zhang H Bioresour Technol; 2021 Dec; 342():126009. PubMed ID: 34563822 [TBL] [Abstract][Full Text] [Related]
19. Influence of solid content and maximum temperature on the performance of a hydrothermal carbonization reactor. Zabaleta I; Marchetti P; Lohri CR; Zurbrügg C Environ Technol; 2017 Nov; 38(22):2856-2865. PubMed ID: 28067116 [TBL] [Abstract][Full Text] [Related]
20. Hydrothermal carbonization of food waste and associated packaging materials for energy source generation. Li L; Diederick R; Flora JR; Berge ND Waste Manag; 2013 Nov; 33(11):2478-92. PubMed ID: 23831005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]