BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28659756)

  • 1. Proprioceptive Feedback through a Neuromorphic Muscle Spindle Model.
    Vannucci L; Falotico E; Laschi C
    Front Neurosci; 2017; 11():341. PubMed ID: 28659756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a Bio-Inspired Real-Time Neuromorphic Cerebellum.
    Bogdan PA; Marcinnò B; Casellato C; Casali S; Rowley AGD; Hopkins M; Leporati F; D'Angelo E; Rhodes O
    Front Cell Neurosci; 2021; 15():622870. PubMed ID: 34135732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromorphic meets neuromechanics, part I: the methodology and implementation.
    Niu CM; Jalaleddini K; Sohn WJ; Rocamora J; Sanger TD; Valero-Cuevas FJ
    J Neural Eng; 2017 Apr; 14(2):025001. PubMed ID: 28084217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Closing the loop: High-speed robotics with accelerated neuromorphic hardware.
    Stradmann Y; Schemmel J
    Front Neurosci; 2024; 18():1360122. PubMed ID: 38595976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model.
    van Albada SJ; Rowley AG; Senk J; Hopkins M; Schmidt M; Stokes AB; Lester DR; Diesmann M; Furber SB
    Front Neurosci; 2018; 12():291. PubMed ID: 29875620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergence of gamma motor activity in an artificial neural network model of the corticospinal system.
    Grandjean B; Maier MA
    J Comput Neurosci; 2017 Feb; 42(1):53-70. PubMed ID: 27677889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nengo and Low-Power AI Hardware for Robust, Embedded Neurorobotics.
    DeWolf T; Jaworski P; Eliasmith C
    Front Neurorobot; 2020; 14():568359. PubMed ID: 33162886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
    Walter F; Röhrbein F; Knoll A
    Neural Netw; 2015 Dec; 72():152-67. PubMed ID: 26422422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fusimotor control of proprioceptive feedback during locomotion and balancing: can simple lessons be learned for artificial control of gait?
    Hulliger M
    Prog Brain Res; 1993; 97():173-80. PubMed ID: 8234743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System.
    Milde MB; Blum H; Dietmüller A; Sumislawska D; Conradt J; Indiveri G; Sandamirskaya Y
    Front Neurorobot; 2017; 11():28. PubMed ID: 28747883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synapse-Centric Mapping of Cortical Models to the SpiNNaker Neuromorphic Architecture.
    Knight JC; Furber SB
    Front Neurosci; 2016; 10():420. PubMed ID: 27683540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. R-STDP Spiking Neural Network Architecture for Motion Control on a Changing Friction Joint Robotic Arm.
    Juarez-Lora A; Ponce-Ponce VH; Sossa H; Rubio-Espino E
    Front Neurorobot; 2022; 16():904017. PubMed ID: 35663727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation.
    Zbrzeski A; Bornat Y; Hillen B; Siu R; Abbas J; Jung R; Renaud S
    Front Neurosci; 2016; 10():275. PubMed ID: 27378844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-Scale Simulations of Plastic Neural Networks on Neuromorphic Hardware.
    Knight JC; Tully PJ; Kaplan BA; Lansner A; Furber SB
    Front Neuroanat; 2016; 10():37. PubMed ID: 27092061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Listen to the Brain-Auditory Sound Source Localization in Neuromorphic Computing Architectures.
    Schmid D; Oess T; Neumann H
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms.
    Diamond A; Nowotny T; Schmuker M
    Front Neurosci; 2015; 9():491. PubMed ID: 26778950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of tonic muscle pain on fusimotor control of human muscle spindles during isometric ankle dorsiflexion.
    Smith LJ; Macefield VG; Birznieks I; Burton AR
    J Neurophysiol; 2019 Apr; 121(4):1143-1149. PubMed ID: 30699044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust Trajectory Generation for Robotic Control on the Neuromorphic Research Chip Loihi.
    Michaelis C; Lehr AB; Tetzlaff C
    Front Neurorobot; 2020; 14():589532. PubMed ID: 33324191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Digital Hardware Realization for Spiking Model of Cutaneous Mechanoreceptor.
    Salimi-Nezhad N; Amiri M; Falotico E; Laschi C
    Front Neurosci; 2018; 12():322. PubMed ID: 29937707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-inspired computational memory model of the Hippocampus: An approach to a neuromorphic spike-based Content-Addressable Memory.
    Casanueva-Morato D; Ayuso-Martinez A; Dominguez-Morales JP; Jimenez-Fernandez A; Jimenez-Moreno G
    Neural Netw; 2024 Jun; 178():106474. PubMed ID: 38941736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.