These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 28659942)
1. Identification of Two New Mechanisms That Regulate Fruit Growth by Cell Expansion in Tomato. Musseau C; Just D; Jorly J; Gévaudant F; Moing A; Chevalier C; Lemaire-Chamley M; Rothan C; Fernandez L Front Plant Sci; 2017; 8():988. PubMed ID: 28659942 [TBL] [Abstract][Full Text] [Related]
2. A novel tomato mutant, Solanum lycopersicum elongated fruit1 (Slelf1), exhibits an elongated fruit shape caused by increased cell layers in the proximal region of the ovary. Chusreeaeom K; Ariizumi T; Asamizu E; Okabe Y; Shirasawa K; Ezura H Mol Genet Genomics; 2014 Jun; 289(3):399-409. PubMed ID: 24519535 [TBL] [Abstract][Full Text] [Related]
3. Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Cheniclet C; Rong WY; Causse M; Frangne N; Bolling L; Carde JP; Renaudin JP Plant Physiol; 2005 Dec; 139(4):1984-94. PubMed ID: 16306145 [TBL] [Abstract][Full Text] [Related]
4. The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato. van der Knaap E; Tanksley SD Theor Appl Genet; 2003 Jun; 107(1):139-47. PubMed ID: 12835939 [TBL] [Abstract][Full Text] [Related]
5. ASYMMETRIC LEAVES 2 and ASYMMETRIC LEAVES 2-LIKE are partially redundant genes and essential for fruit development in tomato. Dong R; Yuan Y; Liu Z; Sun S; Wang H; Ren H; Cui X; Li R Plant J; 2023 Jun; 114(6):1285-1300. PubMed ID: 36932869 [TBL] [Abstract][Full Text] [Related]
6. What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. van der Knaap E; Chakrabarti M; Chu YH; Clevenger JP; Illa-Berenguer E; Huang Z; Keyhaninejad N; Mu Q; Sun L; Wang Y; Wu S Front Plant Sci; 2014; 5():227. PubMed ID: 24904622 [TBL] [Abstract][Full Text] [Related]
7. Reassessing the contribution of TOMATO AGAMOUS-LIKE1 to fruit ripening by CRISPR/Cas9 mutagenesis. Jeon C; Chung MY; Lee JM Plant Cell Rep; 2024 Jan; 43(2):41. PubMed ID: 38246942 [TBL] [Abstract][Full Text] [Related]
8. Remodeling of pectin and hemicelluloses in tomato pericarp during fruit growth. Guillon F; Moïse A; Quemener B; Bouchet B; Devaux MF; Alvarado C; Lahaye M Plant Sci; 2017 Apr; 257():48-62. PubMed ID: 28224918 [TBL] [Abstract][Full Text] [Related]
9. Genetic and physiological characterization of the arlequin insertional mutant reveals a key regulator of reproductive development in tomato. Pineda B; Giménez-Caminero E; García-Sogo B; Antón MT; Atarés A; Capel J; Lozano R; Angosto T; Moreno V Plant Cell Physiol; 2010 Mar; 51(3):435-47. PubMed ID: 20081209 [TBL] [Abstract][Full Text] [Related]
10. Cell layer-specific patterns of cell division and cell expansion during fruit set and fruit growth in tomato pericarp. Renaudin JP; Deluche C; Cheniclet C; Chevalier C; Frangne N J Exp Bot; 2017 Mar; 68(7):1613-1623. PubMed ID: 28369617 [TBL] [Abstract][Full Text] [Related]
11. Genes involved in floral meristem in tomato exhibit drastically reduced genetic diversity and signature of selection. Bauchet G; Munos S; Sauvage C; Bonnet J; Grivet L; Causse M BMC Plant Biol; 2014 Oct; 14():279. PubMed ID: 25325924 [TBL] [Abstract][Full Text] [Related]
12. Fruit growth-related genes in tomato. Azzi L; Deluche C; Gévaudant F; Frangne N; Delmas F; Hernould M; Chevalier C J Exp Bot; 2015 Feb; 66(4):1075-86. PubMed ID: 25573859 [TBL] [Abstract][Full Text] [Related]
13. Genetic analysis of reproductive development in tomato. Lozano R; Giménez E; Cara B; Capel J; Angosto T Int J Dev Biol; 2009; 53(8-10):1635-48. PubMed ID: 19876848 [TBL] [Abstract][Full Text] [Related]
14. Cytokinins is involved in regulation of tomato pericarp thickness and fruit size. Gan L; Song M; Wang X; Yang N; Li H; Liu X; Li Y Hortic Res; 2022 Jan; 9():. PubMed ID: 35043193 [TBL] [Abstract][Full Text] [Related]
16. How fruit developmental biology makes use of flow cytometry approaches. Pirrello J; Bourdon M; Cheniclet C; Bourge M; Brown SC; Renaudin JP; Frangne N; Chevalier C Cytometry A; 2014 Feb; 85(2):115-25. PubMed ID: 24273206 [TBL] [Abstract][Full Text] [Related]
17. Regulation of tomato fruit pericarp development by an interplay between CDKB and CDKA1 cell cycle genes. Czerednik A; Busscher M; Bielen BA; Wolters-Arts M; de Maagd RA; Angenent GC J Exp Bot; 2012 Apr; 63(7):2605-17. PubMed ID: 22282536 [TBL] [Abstract][Full Text] [Related]
18. microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. Ferreira e Silva GF; Silva EM; Azevedo Mda S; Guivin MA; Ramiro DA; Figueiredo CR; Carrer H; Peres LE; Nogueira FT Plant J; 2014 May; 78(4):604-18. PubMed ID: 24580734 [TBL] [Abstract][Full Text] [Related]
19. Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape. Xiao H; Radovich C; Welty N; Hsu J; Li D; Meulia T; van der Knaap E BMC Plant Biol; 2009 May; 9():49. PubMed ID: 19422692 [TBL] [Abstract][Full Text] [Related]
20. Identification of alternative splicing events by RNA sequencing in early growth tomato fruits. Sun Y; Xiao H BMC Genomics; 2015 Nov; 16():948. PubMed ID: 26573826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]