These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
845 related articles for article (PubMed ID: 28660288)
21. Suppression of OsSAUR2 gene expression immobilizes soil arsenic bioavailability by modulating root exudation and rhizosphere microbial assembly in rice. Sun X; Jiang C; Guo Y; Li C; Zhao W; Nie F; Liu Q J Hazard Mater; 2024 Jul; 473():134587. PubMed ID: 38772107 [TBL] [Abstract][Full Text] [Related]
22. Water management and phenology influence the root-associated rice field microbiota. Chialva M; Ghignone S; Cozzi P; Lazzari B; Bonfante P; Abbruscato P; Lumini E FEMS Microbiol Ecol; 2020 Sep; 96(9):. PubMed ID: 32720684 [TBL] [Abstract][Full Text] [Related]
23. Detection and quantification of native microbial populations on soil-grown rice roots by catalyzed reporter deposition-fluorescence in situ hybridization. Schmidt H; Eickhorst T FEMS Microbiol Ecol; 2014 Feb; 87(2):390-402. PubMed ID: 24118011 [TBL] [Abstract][Full Text] [Related]
24. Distinct rhizosphere effect on active and total bacterial communities in paddy soils. Li H; Su JQ; Yang XR; Zhu YG Sci Total Environ; 2019 Feb; 649():422-430. PubMed ID: 30176455 [TBL] [Abstract][Full Text] [Related]
25. Long-Term Manure Application Changes Bacterial Communities in Rice Rhizosphere and Arsenic Speciation in Rice Grains. Tang X; Zou L; Su S; Lu Y; Zhai W; Manzoor M; Liao Y; Nie J; Shi J; Ma LQ; Xu J Environ Sci Technol; 2021 Feb; 55(3):1555-1565. PubMed ID: 33449628 [TBL] [Abstract][Full Text] [Related]
26. Biotechnological potential of plant growth-promoting bacteria from the roots and rhizospheres of endemic plants in ironstone vegetation in southeastern Brazil. Felestrino ÉB; Vieira IT; Caneschi WL; Cordeiro IF; Assis RAB; Lemes CGC; Fonseca NP; Sanchez AB; Cepeda JCC; Ferro JA; Garcia CCM; do Carmo FF; Kamino LHY; Moreira LM World J Microbiol Biotechnol; 2018 Oct; 34(10):156. PubMed ID: 30284648 [TBL] [Abstract][Full Text] [Related]
27. Fungal mediated biotransformation reduces toxicity of arsenic to soil dwelling microorganism and plant. Mohd S; Kushwaha AS; Shukla J; Mandrah K; Shankar J; Arjaria N; Saxena PN; Khare P; Narayan R; Dixit S; Siddiqui MH; Tuteja N; Das M; Roy SK; Kumar M Ecotoxicol Environ Saf; 2019 Jul; 176():108-118. PubMed ID: 30925326 [TBL] [Abstract][Full Text] [Related]
28. Dynamics of the rice rhizosphere microbial community under continuous and intermittent flooding treatment. Li H; Yu Y; Guo J; Li X; Rensing C; Wang G J Environ Manage; 2019 Nov; 249():109326. PubMed ID: 31421482 [TBL] [Abstract][Full Text] [Related]
29. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar. Qiao JT; Li XM; Li FB J Hazard Mater; 2018 Feb; 344():958-967. PubMed ID: 29197791 [TBL] [Abstract][Full Text] [Related]
30. Niche Differentiation of Arsenic-Transforming Microbial Groups in the Rice Rhizosphere Compartments as Impacted by Water Management and Soil-Arsenic Concentrations. Somenahally AC; Loeppert RH; Zhou J; Gentry TJ Front Microbiol; 2021; 12():736751. PubMed ID: 34803950 [TBL] [Abstract][Full Text] [Related]
31. Accumulation, translocation and conversion of six arsenic species in rice plants grown near a mine impacted city. Ma L; Wang L; Jia Y; Yang Z Chemosphere; 2017 Sep; 183():44-52. PubMed ID: 28531558 [TBL] [Abstract][Full Text] [Related]
32. The translocation of antimony in soil-rice system with comparisons to arsenic: Alleviation of their accumulation in rice by simultaneous use of Fe(II) and NO Wang X; Li F; Yuan C; Li B; Liu T; Liu C; Du Y; Liu C Sci Total Environ; 2019 Feb; 650(Pt 1):633-641. PubMed ID: 30212692 [TBL] [Abstract][Full Text] [Related]
33. Microbiomes inhabiting rice roots and rhizosphere. Ding LJ; Cui HL; Nie SA; Long XE; Duan GL; Zhu YG FEMS Microbiol Ecol; 2019 May; 95(5):. PubMed ID: 30916760 [TBL] [Abstract][Full Text] [Related]
34. Arsenic biotransformation genes and As transportation in soil-rice system affected by iron-oxidizing strain (Ochrobactrum sp.). Xue S; He X; Jiang X; Pan W; Li W; Xia L; Wu C Environ Pollut; 2022 Dec; 314():120311. PubMed ID: 36181941 [TBL] [Abstract][Full Text] [Related]
35. Arsenic transfer and accumulation in the soil-rice system with sulfur application and different water managements. Liu Z; Zhuang Z; Yu Y; Wang Q; Wan YN; Li HF Chemosphere; 2021 Apr; 269():128772. PubMed ID: 33143891 [TBL] [Abstract][Full Text] [Related]
36. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Zhang Y; Xu J; Riera N; Jin T; Li J; Wang N Microbiome; 2017 Aug; 5(1):97. PubMed ID: 28797279 [TBL] [Abstract][Full Text] [Related]
37. Rhizosphere bacterial community composition affects cadmium and arsenic accumulation in rice (Oryza sativa L.). Huang L; Wang X; Chi Y; Huang L; Li WC; Ye Z Ecotoxicol Environ Saf; 2021 Oct; 222():112474. PubMed ID: 34214770 [TBL] [Abstract][Full Text] [Related]
38. Sulfur oxidation in rice field soil: activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria. Stubner S; Wind T; Conrad R Syst Appl Microbiol; 1998 Dec; 21(4):569-78. PubMed ID: 9924825 [TBL] [Abstract][Full Text] [Related]
39. Structure and variation of root-associated microbiomes of potato grown in alfisol. Mardanova A; Lutfullin M; Hadieva G; Akosah Y; Pudova D; Kabanov D; Shagimardanova E; Vankov P; Vologin S; Gogoleva N; Stasevski Z; Sharipova M World J Microbiol Biotechnol; 2019 Nov; 35(12):181. PubMed ID: 31728652 [TBL] [Abstract][Full Text] [Related]
40. Characterization of the rare microbiome of rice paddy soil from arsenic contaminated hotspot of West Bengal and their interrelation with arsenic and other geochemical parameters. Bose H; Saha A; Sahu RP; Dey AS; Sar P World J Microbiol Biotechnol; 2022 Jul; 38(10):171. PubMed ID: 35907093 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]