BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28660425)

  • 1. The Fate of Mengovirus on Fiberglass Filter of Air Handling Units.
    Bandaly V; Joubert A; Le Cann P; Andres Y
    Food Environ Virol; 2017 Dec; 9(4):464-472. PubMed ID: 28660425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenovirus behavior in air handling unit fiberglass filters.
    Bandaly V; Joubert A; Andres Y; Le Cann P
    Aerobiologia (Bologna); 2019; 35(2):357-366. PubMed ID: 32214630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of viruses in used ventilation filters from two large public buildings.
    Goyal SM; Anantharaman S; Ramakrishnan MA; Sajja S; Kim SW; Stanley NJ; Farnsworth JE; Kuehn TH; Raynor PC
    Am J Infect Control; 2011 Sep; 39(7):e30-8. PubMed ID: 21549446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of viable bioaerosol particles with a low-efficiency HVAC filter enhanced by continuous emission of unipolar air ions.
    Huang R; Agranovski I; Pyankov O; Grinshpun S
    Indoor Air; 2008 Apr; 18(2):106-12. PubMed ID: 18333990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A systematic review and meta-analysis of indoor bioaerosols in hospitals: The influence of heating, ventilation, and air conditioning.
    Dai R; Liu S; Li Q; Wu H; Wu L; Ji C
    PLoS One; 2021; 16(12):e0259996. PubMed ID: 34941879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensory pollution from bag filters, carbon filters and combinations.
    Bekö G; Clausen G; Weschler CJ
    Indoor Air; 2008 Feb; 18(1):27-36. PubMed ID: 18093129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of the fungal fraction released from various preloaded fibrous filters during a simulated ventilation restart.
    Morisseau K; Joubert A; Le Coq L; Andres Y
    Indoor Air; 2017 May; 27(3):529-538. PubMed ID: 27564375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative filter forensics with residential HVAC filters to assess indoor concentrations.
    Givehchi R; Maestre JP; Bi C; Wylie D; Xu Y; Kinney KA; Siegel JA
    Indoor Air; 2019 May; 29(3):390-402. PubMed ID: 30624800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The long-term performance of electrically charged filters in a ventilation system.
    Raynor PC; Chae SJ
    J Occup Environ Hyg; 2004 Jul; 1(7):463-71. PubMed ID: 15238317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collection of biological and non-biological particles by new and used filters made from glass and electrostatically charged synthetic fibers.
    Raynor PC; Kim BG; Ramachandran G; Strommen MR; Horns JH; Streifel AJ
    Indoor Air; 2008 Feb; 18(1):51-62. PubMed ID: 18093124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid Oxygen-Purifying (SOP) Filters: A Self-Disinfecting Filters to Inactivate Aerosolized Viruses.
    Versoza M; Heo J; Ko S; Kim M; Park D
    Int J Environ Res Public Health; 2020 Oct; 17(21):. PubMed ID: 33120940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA accumulation on ventilation system filters in university buildings in Singapore.
    Luhung I; Wu Y; Xu S; Yamamoto N; Chang VW; Nazaroff WW
    PLoS One; 2017; 12(10):e0186295. PubMed ID: 29023520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigations on the survival time of outdoor microorganisms on air filters.
    Möritz M; Schleibinger H; Rüden H
    Zentralbl Hyg Umweltmed; 1998 Jun; 201(2):125-33. PubMed ID: 9686443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of bioaerosol samplers for the detection and quantification of influenza virus from artificial aerosols and influenza virus-infected ferrets.
    Bekking C; Yip L; Groulx N; Doggett N; Finn M; Mubareka S
    Influenza Other Respir Viruses; 2019 Nov; 13(6):564-573. PubMed ID: 31541519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changing microbial concentrations are associated with ventilation performance in Taiwan's air-conditioned office buildings.
    Wu PC; Li YY; Chiang CM; Huang CY; Lee CC; Li FC; Su HJ
    Indoor Air; 2005 Feb; 15(1):19-26. PubMed ID: 15660566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency of different air filter types for pig facilities at laboratory scale.
    Wenke C; Pospiech J; Reutter T; Truyen U; Speck S
    PLoS One; 2017; 12(10):e0186558. PubMed ID: 29028843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methodology for modeling the microbial contamination of air filters.
    Joe YH; Yoon KY; Hwang J
    PLoS One; 2014; 9(2):e88514. PubMed ID: 24523908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of potential aerosol transmission and infectivity of SARS-CoV-2 through central ventilation systems.
    Pease LF; Wang N; Salsbury TI; Underhill RM; Flaherty JE; Vlachokostas A; Kulkarni G; James DP
    Build Environ; 2021 Jun; 197():107633. PubMed ID: 33531734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Air filters for indoor environments: Interlaboratory evaluation of the new international filter testing standard ISO 16890.
    Schuldt T; Däuber E; Engelke T; Schmidt F
    Indoor Air; 2020 May; 30(3):473-480. PubMed ID: 32096257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of Air Filter Anti-Viral Efficiency against an Airborne Infectious Virus.
    Park DH; Joe YH; Piri A; An S; Hwang J
    J Hazard Mater; 2020 Sep; 396():122640. PubMed ID: 32339873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.