BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 28660725)

  • 1. Automated robot-assisted surgical skill evaluation: Predictive analytics approach.
    Fard MJ; Ameri S; Darin Ellis R; Chinnam RB; Pandya AK; Klein MD
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28660725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated surgical skill assessment in RMIS training.
    Zia A; Essa I
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):731-739. PubMed ID: 29549553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Contact Forces and Robot Arm Accelerations to Automatically Rate Surgeon Skill at Peg Transfer.
    Brown JD; O Brien CE; Leung SC; Dumon KR; Lee DI; Kuchenbecker KJ
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2263-2275. PubMed ID: 28113295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surgical skill levels: Classification and analysis using deep neural network model and motion signals.
    Nguyen XA; Ljuhar D; Pacilli M; Nataraja RM; Chauhan S
    Comput Methods Programs Biomed; 2019 Aug; 177():1-8. PubMed ID: 31319938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Efficient Single-session Spatial Skill Trainer for Robot-assisted Surgery: A Randomized Trial.
    Luko L; Parush A; Matanes E; Lauterbach R; Taitler A; Lowenstein L
    J Minim Invasive Gynecol; 2020; 27(3):728-737.e2. PubMed ID: 31146028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endoscopic Image-Based Skill Assessment in Robot-Assisted Minimally Invasive Surgery.
    Lajkó G; Nagyné Elek R; Haidegger T
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surgical skill level classification model development using EEG and eye-gaze data and machine learning algorithms.
    Shafiei SB; Shadpour S; Mohler JL; Sasangohar F; Gutierrez C; Seilanian Toussi M; Shafqat A
    J Robot Surg; 2023 Dec; 17(6):2963-2971. PubMed ID: 37864129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using objective robotic automated performance metrics and task-evoked pupillary response to distinguish surgeon expertise.
    Nguyen JH; Chen J; Marshall SP; Ghodoussipour S; Chen A; Gill IS; Hung AJ
    World J Urol; 2020 Jul; 38(7):1599-1605. PubMed ID: 31346762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a technical checklist for the assessment of suturing in robotic surgery.
    Guni A; Raison N; Challacombe B; Khan S; Dasgupta P; Ahmed K
    Surg Endosc; 2018 Nov; 32(11):4402-4407. PubMed ID: 30194643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning based Classification of Local Robotic Surgical Skills in a Training Tasks Set.
    Juarez-Villalobos L; Hevia-Montiel N; Perez-Gonzalez J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4596-4599. PubMed ID: 34892239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of laparoscopic and robotic assisted suturing performance by experts and novices.
    Chandra V; Nehra D; Parent R; Woo R; Reyes R; Hernandez-Boussard T; Dutta S
    Surgery; 2010 Jun; 147(6):830-9. PubMed ID: 20045162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards near real-time assessment of surgical skills: A comparison of feature extraction techniques.
    Anh NX; Nataraja RM; Chauhan S
    Comput Methods Programs Biomed; 2020 Apr; 187():105234. PubMed ID: 31794913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cognitive skills assessment during robot-assisted surgery: separating the wheat from the chaff.
    Guru KA; Esfahani ET; Raza SJ; Bhat R; Wang K; Hammond Y; Wilding G; Peabody JO; Chowriappa AJ
    BJU Int; 2015 Jan; 115(1):166-74. PubMed ID: 24467726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Task analysis of laparoscopic camera control schemes.
    Ellis RD; Munaco AJ; Reisner LA; Klein MD; Composto AM; Pandya AK; King BW
    Int J Med Robot; 2016 Dec; 12(4):576-584. PubMed ID: 26648563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of visual force feedback on robot-assisted surgical task performance.
    Reiley CE; Akinbiyi T; Burschka D; Chang DC; Okamura AM; Yuh DD
    J Thorac Cardiovasc Surg; 2008 Jan; 135(1):196-202. PubMed ID: 18179942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An automatic skill evaluation framework for robotic surgery training.
    Peng W; Xing Y; Liu R; Li J; Zhang Z
    Int J Med Robot; 2019 Feb; 15(1):e1964. PubMed ID: 30281892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robot-assisted ex vivo neobladder reconstruction: preliminary results of surgical skill evaluation.
    Chen Z; Terlizzi S; Da Col T; Marzullo A; Catellani M; Ferrigno G; De Momi E
    Int J Comput Assist Radiol Surg; 2022 Dec; 17(12):2315-2323. PubMed ID: 35802223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Surgical Devices Using an Artificial Pediatric Thoracic Model: A Comparison Between Robot-Assisted Thoracoscopic Suturing Versus Conventional Video-Assisted Thoracoscopic Suturing.
    Takazawa S; Ishimaru T; Harada K; Deie K; Hinoki A; Uchida H; Sugita N; Mitsuishi M; Iwanaka T; Fujishiro J
    J Laparoendosc Adv Surg Tech A; 2018 May; 28(5):622-627. PubMed ID: 29406817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion control skill assessment based on kinematic analysis of robotic end-effector movements.
    Liang K; Xing Y; Li J; Wang S; Li A; Li J
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28660644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion analysis of the JHU-ISI Gesture and Skill Assessment Working Set using Robotics Video and Motion Assessment Software.
    Lefor AK; Harada K; Dosis A; Mitsuishi M
    Int J Comput Assist Radiol Surg; 2020 Dec; 15(12):2017-2025. PubMed ID: 33025366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.